Properties

Label 2-197-1.1-c5-0-59
Degree $2$
Conductor $197$
Sign $-1$
Analytic cond. $31.5956$
Root an. cond. $5.62099$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9.01·2-s + 28.8·3-s + 49.2·4-s − 22.2·5-s − 260.·6-s − 142.·7-s − 155.·8-s + 589.·9-s + 200.·10-s − 143.·11-s + 1.42e3·12-s + 224.·13-s + 1.28e3·14-s − 642.·15-s − 173.·16-s − 592.·17-s − 5.31e3·18-s − 32.3·19-s − 1.09e3·20-s − 4.10e3·21-s + 1.29e3·22-s − 3.08e3·23-s − 4.49e3·24-s − 2.62e3·25-s − 2.02e3·26-s + 9.99e3·27-s − 7.00e3·28-s + ⋯
L(s)  = 1  − 1.59·2-s + 1.85·3-s + 1.53·4-s − 0.398·5-s − 2.94·6-s − 1.09·7-s − 0.859·8-s + 2.42·9-s + 0.635·10-s − 0.357·11-s + 2.84·12-s + 0.367·13-s + 1.74·14-s − 0.737·15-s − 0.169·16-s − 0.497·17-s − 3.86·18-s − 0.0205·19-s − 0.613·20-s − 2.02·21-s + 0.569·22-s − 1.21·23-s − 1.59·24-s − 0.841·25-s − 0.586·26-s + 2.63·27-s − 1.68·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 197 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 197 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(197\)
Sign: $-1$
Analytic conductor: \(31.5956\)
Root analytic conductor: \(5.62099\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 197,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad197 \( 1 + 3.88e4T \)
good2 \( 1 + 9.01T + 32T^{2} \)
3 \( 1 - 28.8T + 243T^{2} \)
5 \( 1 + 22.2T + 3.12e3T^{2} \)
7 \( 1 + 142.T + 1.68e4T^{2} \)
11 \( 1 + 143.T + 1.61e5T^{2} \)
13 \( 1 - 224.T + 3.71e5T^{2} \)
17 \( 1 + 592.T + 1.41e6T^{2} \)
19 \( 1 + 32.3T + 2.47e6T^{2} \)
23 \( 1 + 3.08e3T + 6.43e6T^{2} \)
29 \( 1 - 2.34e3T + 2.05e7T^{2} \)
31 \( 1 - 593.T + 2.86e7T^{2} \)
37 \( 1 + 8.41e3T + 6.93e7T^{2} \)
41 \( 1 + 4.51e3T + 1.15e8T^{2} \)
43 \( 1 + 1.52e4T + 1.47e8T^{2} \)
47 \( 1 - 1.06e4T + 2.29e8T^{2} \)
53 \( 1 - 1.65e4T + 4.18e8T^{2} \)
59 \( 1 + 2.93e4T + 7.14e8T^{2} \)
61 \( 1 - 2.13e4T + 8.44e8T^{2} \)
67 \( 1 + 4.20e4T + 1.35e9T^{2} \)
71 \( 1 + 6.56e4T + 1.80e9T^{2} \)
73 \( 1 - 2.10e3T + 2.07e9T^{2} \)
79 \( 1 - 7.16e4T + 3.07e9T^{2} \)
83 \( 1 + 8.15e4T + 3.93e9T^{2} \)
89 \( 1 - 1.40e4T + 5.58e9T^{2} \)
97 \( 1 + 1.31e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.41256204946801471476052648067, −9.855245839517909345411101146779, −8.980773012500813581749188087944, −8.319622810965583184928877400141, −7.54417942628476752259083871690, −6.59056457868262419013004942904, −3.99862284901154521402241232678, −2.86544574427182806128562929993, −1.73652246262565919358673756589, 0, 1.73652246262565919358673756589, 2.86544574427182806128562929993, 3.99862284901154521402241232678, 6.59056457868262419013004942904, 7.54417942628476752259083871690, 8.319622810965583184928877400141, 8.980773012500813581749188087944, 9.855245839517909345411101146779, 10.41256204946801471476052648067

Graph of the $Z$-function along the critical line