L(s) = 1 | − 10.7·2-s + 19.4·3-s + 82.7·4-s + 86.8·5-s − 208.·6-s − 107.·7-s − 543.·8-s + 136.·9-s − 930.·10-s + 73.1·11-s + 1.61e3·12-s − 497.·13-s + 1.15e3·14-s + 1.69e3·15-s + 3.17e3·16-s + 368.·17-s − 1.46e3·18-s + 976.·19-s + 7.18e3·20-s − 2.10e3·21-s − 783.·22-s + 4.09e3·23-s − 1.05e4·24-s + 4.41e3·25-s + 5.33e3·26-s − 2.06e3·27-s − 8.92e3·28-s + ⋯ |
L(s) = 1 | − 1.89·2-s + 1.25·3-s + 2.58·4-s + 1.55·5-s − 2.36·6-s − 0.832·7-s − 3.00·8-s + 0.563·9-s − 2.94·10-s + 0.182·11-s + 3.23·12-s − 0.816·13-s + 1.57·14-s + 1.94·15-s + 3.10·16-s + 0.309·17-s − 1.06·18-s + 0.620·19-s + 4.01·20-s − 1.04·21-s − 0.345·22-s + 1.61·23-s − 3.75·24-s + 1.41·25-s + 1.54·26-s − 0.546·27-s − 2.15·28-s + ⋯ |
Λ(s)=(=(197s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(197s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
1.628459032 |
L(21) |
≈ |
1.628459032 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 197 | 1−3.88e4T |
good | 2 | 1+10.7T+32T2 |
| 3 | 1−19.4T+243T2 |
| 5 | 1−86.8T+3.12e3T2 |
| 7 | 1+107.T+1.68e4T2 |
| 11 | 1−73.1T+1.61e5T2 |
| 13 | 1+497.T+3.71e5T2 |
| 17 | 1−368.T+1.41e6T2 |
| 19 | 1−976.T+2.47e6T2 |
| 23 | 1−4.09e3T+6.43e6T2 |
| 29 | 1+3.14e3T+2.05e7T2 |
| 31 | 1−4.04e3T+2.86e7T2 |
| 37 | 1−1.44e4T+6.93e7T2 |
| 41 | 1−1.00e4T+1.15e8T2 |
| 43 | 1−8.39e3T+1.47e8T2 |
| 47 | 1−7.53e3T+2.29e8T2 |
| 53 | 1−3.18e4T+4.18e8T2 |
| 59 | 1+3.71e4T+7.14e8T2 |
| 61 | 1−4.58e3T+8.44e8T2 |
| 67 | 1+1.66e4T+1.35e9T2 |
| 71 | 1−1.97e4T+1.80e9T2 |
| 73 | 1−8.33e4T+2.07e9T2 |
| 79 | 1−7.32e4T+3.07e9T2 |
| 83 | 1+9.00e4T+3.93e9T2 |
| 89 | 1+1.03e5T+5.58e9T2 |
| 97 | 1−1.36e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.07506173113465435809700907094, −9.933051274225912322068738873480, −9.456392466739912960429343915045, −9.052068512871726627414031971541, −7.81245969078994898086970680693, −6.89635790226067647775830606773, −5.80349582151469204699240657679, −2.93753304344969174342694365815, −2.33241885369118099625058241868, −1.01066128037433157390832138485,
1.01066128037433157390832138485, 2.33241885369118099625058241868, 2.93753304344969174342694365815, 5.80349582151469204699240657679, 6.89635790226067647775830606773, 7.81245969078994898086970680693, 9.052068512871726627414031971541, 9.456392466739912960429343915045, 9.933051274225912322068738873480, 11.07506173113465435809700907094