L(s) = 1 | − 8.71i·3-s + (7 + 8.71i)5-s + 8.71i·7-s − 49.0·9-s + 20·11-s + 52.3i·13-s + (76.0 − 61.0i)15-s − 69.7i·17-s − 84·19-s + 76.0·21-s − 61.0i·23-s + (−27.0 + 122. i)25-s + 191. i·27-s + 6·29-s − 224·31-s + ⋯ |
L(s) = 1 | − 1.67i·3-s + (0.626 + 0.779i)5-s + 0.470i·7-s − 1.81·9-s + 0.548·11-s + 1.11i·13-s + (1.30 − 1.05i)15-s − 0.995i·17-s − 1.01·19-s + 0.789·21-s − 0.553i·23-s + (−0.216 + 0.976i)25-s + 1.36i·27-s + 0.0384·29-s − 1.29·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 20 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.626 + 0.779i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 20 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.626 + 0.779i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.01897 - 0.488615i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.01897 - 0.488615i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-7 - 8.71i)T \) |
good | 3 | \( 1 + 8.71iT - 27T^{2} \) |
| 7 | \( 1 - 8.71iT - 343T^{2} \) |
| 11 | \( 1 - 20T + 1.33e3T^{2} \) |
| 13 | \( 1 - 52.3iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 69.7iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 84T + 6.85e3T^{2} \) |
| 23 | \( 1 + 61.0iT - 1.21e4T^{2} \) |
| 29 | \( 1 - 6T + 2.43e4T^{2} \) |
| 31 | \( 1 + 224T + 2.97e4T^{2} \) |
| 37 | \( 1 + 122. iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 266T + 6.89e4T^{2} \) |
| 43 | \( 1 - 305. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 374. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 366. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 28T + 2.05e5T^{2} \) |
| 61 | \( 1 - 182T + 2.26e5T^{2} \) |
| 67 | \( 1 + 427. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 408T + 3.57e5T^{2} \) |
| 73 | \( 1 + 1.08e3iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 48T + 4.93e5T^{2} \) |
| 83 | \( 1 - 200. iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 1.52e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + 557. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.08083386241452452491186441512, −16.80385419446652342359555965183, −14.61699373435934343023098856324, −13.75028849132029244324851523436, −12.46815259895530776601873678406, −11.25278276316939258229292415292, −9.068424520127858991695121819413, −7.20124157754998590148797684238, −6.19234148341793526883379278252, −2.17574836811444390244578782448,
4.04559734726076053379783345269, 5.60960235659322356340998779670, 8.608894150981030211255287408288, 9.846903727540078403039718758298, 10.84802298015777363479779749574, 12.84060968202092836931152176590, 14.45371790187605513640779832026, 15.57366033980970387120580076788, 16.78745847343915461491075569813, 17.43398165083592770586898744393