L(s) = 1 | + 5·3-s + 2·7-s − 2·9-s + 39·11-s + 84·13-s − 61·17-s + 151·19-s + 10·21-s − 58·23-s − 145·27-s + 192·29-s − 18·31-s + 195·33-s − 138·37-s + 420·39-s + 229·41-s − 164·43-s − 212·47-s − 339·49-s − 305·51-s + 578·53-s + 755·57-s − 336·59-s + 858·61-s − 4·63-s − 209·67-s − 290·69-s + ⋯ |
L(s) = 1 | + 0.962·3-s + 0.107·7-s − 0.0740·9-s + 1.06·11-s + 1.79·13-s − 0.870·17-s + 1.82·19-s + 0.103·21-s − 0.525·23-s − 1.03·27-s + 1.22·29-s − 0.104·31-s + 1.02·33-s − 0.613·37-s + 1.72·39-s + 0.872·41-s − 0.581·43-s − 0.657·47-s − 0.988·49-s − 0.837·51-s + 1.49·53-s + 1.75·57-s − 0.741·59-s + 1.80·61-s − 0.00799·63-s − 0.381·67-s − 0.505·69-s + ⋯ |
Λ(s)=(=(200s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(200s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.595673122 |
L(21) |
≈ |
2.595673122 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1−5T+p3T2 |
| 7 | 1−2T+p3T2 |
| 11 | 1−39T+p3T2 |
| 13 | 1−84T+p3T2 |
| 17 | 1+61T+p3T2 |
| 19 | 1−151T+p3T2 |
| 23 | 1+58T+p3T2 |
| 29 | 1−192T+p3T2 |
| 31 | 1+18T+p3T2 |
| 37 | 1+138T+p3T2 |
| 41 | 1−229T+p3T2 |
| 43 | 1+164T+p3T2 |
| 47 | 1+212T+p3T2 |
| 53 | 1−578T+p3T2 |
| 59 | 1+336T+p3T2 |
| 61 | 1−858T+p3T2 |
| 67 | 1+209T+p3T2 |
| 71 | 1+780T+p3T2 |
| 73 | 1+403T+p3T2 |
| 79 | 1+230T+p3T2 |
| 83 | 1+1293T+p3T2 |
| 89 | 1+1369T+p3T2 |
| 97 | 1−382T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.85340200077995382974986278357, −11.18557493684478897875068215159, −9.807469515722484982055208540286, −8.842760142606351954510600134901, −8.277835662904540116112287939789, −6.92577140210464799514359797394, −5.78253706349857504577230947665, −4.07965010062562905854019559774, −3.08039223659535500209288017213, −1.39244343621259215093755400948,
1.39244343621259215093755400948, 3.08039223659535500209288017213, 4.07965010062562905854019559774, 5.78253706349857504577230947665, 6.92577140210464799514359797394, 8.277835662904540116112287939789, 8.842760142606351954510600134901, 9.807469515722484982055208540286, 11.18557493684478897875068215159, 11.85340200077995382974986278357