L(s) = 1 | + (−0.214 − 5.65i)2-s + 18.7·3-s + (−31.9 + 2.42i)4-s + (−4.03 − 106. i)6-s + 107. i·7-s + (20.5 + 179. i)8-s + 109.·9-s − 272. i·11-s + (−599. + 45.5i)12-s − 198.·13-s + (607. − 23.0i)14-s + (1.01e3 − 154. i)16-s − 2.06e3i·17-s + (−23.5 − 621. i)18-s − 1.89e3i·19-s + ⋯ |
L(s) = 1 | + (−0.0379 − 0.999i)2-s + 1.20·3-s + (−0.997 + 0.0757i)4-s + (−0.0457 − 1.20i)6-s + 0.829i·7-s + (0.113 + 0.993i)8-s + 0.452·9-s − 0.678i·11-s + (−1.20 + 0.0913i)12-s − 0.325·13-s + (0.828 − 0.0314i)14-s + (0.988 − 0.151i)16-s − 1.73i·17-s + (−0.0171 − 0.452i)18-s − 1.20i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.837 + 0.545i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.837 + 0.545i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(2.000178983\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.000178983\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.214 + 5.65i)T \) |
| 5 | \( 1 \) |
good | 3 | \( 1 - 18.7T + 243T^{2} \) |
| 7 | \( 1 - 107. iT - 1.68e4T^{2} \) |
| 11 | \( 1 + 272. iT - 1.61e5T^{2} \) |
| 13 | \( 1 + 198.T + 3.71e5T^{2} \) |
| 17 | \( 1 + 2.06e3iT - 1.41e6T^{2} \) |
| 19 | \( 1 + 1.89e3iT - 2.47e6T^{2} \) |
| 23 | \( 1 + 987. iT - 6.43e6T^{2} \) |
| 29 | \( 1 + 8.01e3iT - 2.05e7T^{2} \) |
| 31 | \( 1 - 827.T + 2.86e7T^{2} \) |
| 37 | \( 1 - 9.42e3T + 6.93e7T^{2} \) |
| 41 | \( 1 + 8.22e3T + 1.15e8T^{2} \) |
| 43 | \( 1 - 9.30e3T + 1.47e8T^{2} \) |
| 47 | \( 1 + 1.38e4iT - 2.29e8T^{2} \) |
| 53 | \( 1 - 2.77e4T + 4.18e8T^{2} \) |
| 59 | \( 1 - 2.51e4iT - 7.14e8T^{2} \) |
| 61 | \( 1 - 2.64e4iT - 8.44e8T^{2} \) |
| 67 | \( 1 + 3.85e4T + 1.35e9T^{2} \) |
| 71 | \( 1 + 7.10e4T + 1.80e9T^{2} \) |
| 73 | \( 1 - 1.86e4iT - 2.07e9T^{2} \) |
| 79 | \( 1 - 7.55e4T + 3.07e9T^{2} \) |
| 83 | \( 1 + 1.25e5T + 3.93e9T^{2} \) |
| 89 | \( 1 + 3.03e4T + 5.58e9T^{2} \) |
| 97 | \( 1 + 1.56e4iT - 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.41741951323517209949600270814, −9.991155544913944979439651214591, −9.112161537874882622053406471496, −8.626350946465473828877933587608, −7.47697667261892096017800574743, −5.61685796608592472252090006049, −4.32279561047950154368772725521, −2.81187431058671120894161946817, −2.48318532069844863634194154227, −0.53406277465308975867335877180,
1.55134694009352904798007621802, 3.46121859857541637989201904099, 4.34696826202529040576947244123, 5.87544460326345948155424841355, 7.17015136861881021997026954856, 7.910781529723529163151766850614, 8.718496984805164292501145731676, 9.757278627514257709056053828517, 10.55887415077192994466410158691, 12.45846450131474936915348055348