L(s) = 1 | + (−0.214 − 5.65i)2-s + 18.7·3-s + (−31.9 + 2.42i)4-s + (−4.03 − 106. i)6-s + 107. i·7-s + (20.5 + 179. i)8-s + 109.·9-s − 272. i·11-s + (−599. + 45.5i)12-s − 198.·13-s + (607. − 23.0i)14-s + (1.01e3 − 154. i)16-s − 2.06e3i·17-s + (−23.5 − 621. i)18-s − 1.89e3i·19-s + ⋯ |
L(s) = 1 | + (−0.0379 − 0.999i)2-s + 1.20·3-s + (−0.997 + 0.0757i)4-s + (−0.0457 − 1.20i)6-s + 0.829i·7-s + (0.113 + 0.993i)8-s + 0.452·9-s − 0.678i·11-s + (−1.20 + 0.0913i)12-s − 0.325·13-s + (0.828 − 0.0314i)14-s + (0.988 − 0.151i)16-s − 1.73i·17-s + (−0.0171 − 0.452i)18-s − 1.20i·19-s + ⋯ |
Λ(s)=(=(200s/2ΓC(s)L(s)(−0.837+0.545i)Λ(6−s)
Λ(s)=(=(200s/2ΓC(s+5/2)L(s)(−0.837+0.545i)Λ(1−s)
Degree: |
2 |
Conductor: |
200
= 23⋅52
|
Sign: |
−0.837+0.545i
|
Analytic conductor: |
32.0767 |
Root analytic conductor: |
5.66363 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ200(149,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 200, ( :5/2), −0.837+0.545i)
|
Particular Values
L(3) |
≈ |
2.000178983 |
L(21) |
≈ |
2.000178983 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.214+5.65i)T |
| 5 | 1 |
good | 3 | 1−18.7T+243T2 |
| 7 | 1−107.iT−1.68e4T2 |
| 11 | 1+272.iT−1.61e5T2 |
| 13 | 1+198.T+3.71e5T2 |
| 17 | 1+2.06e3iT−1.41e6T2 |
| 19 | 1+1.89e3iT−2.47e6T2 |
| 23 | 1+987.iT−6.43e6T2 |
| 29 | 1+8.01e3iT−2.05e7T2 |
| 31 | 1−827.T+2.86e7T2 |
| 37 | 1−9.42e3T+6.93e7T2 |
| 41 | 1+8.22e3T+1.15e8T2 |
| 43 | 1−9.30e3T+1.47e8T2 |
| 47 | 1+1.38e4iT−2.29e8T2 |
| 53 | 1−2.77e4T+4.18e8T2 |
| 59 | 1−2.51e4iT−7.14e8T2 |
| 61 | 1−2.64e4iT−8.44e8T2 |
| 67 | 1+3.85e4T+1.35e9T2 |
| 71 | 1+7.10e4T+1.80e9T2 |
| 73 | 1−1.86e4iT−2.07e9T2 |
| 79 | 1−7.55e4T+3.07e9T2 |
| 83 | 1+1.25e5T+3.93e9T2 |
| 89 | 1+3.03e4T+5.58e9T2 |
| 97 | 1+1.56e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.41741951323517209949600270814, −9.991155544913944979439651214591, −9.112161537874882622053406471496, −8.626350946465473828877933587608, −7.47697667261892096017800574743, −5.61685796608592472252090006049, −4.32279561047950154368772725521, −2.81187431058671120894161946817, −2.48318532069844863634194154227, −0.53406277465308975867335877180,
1.55134694009352904798007621802, 3.46121859857541637989201904099, 4.34696826202529040576947244123, 5.87544460326345948155424841355, 7.17015136861881021997026954856, 7.910781529723529163151766850614, 8.718496984805164292501145731676, 9.757278627514257709056053828517, 10.55887415077192994466410158691, 12.45846450131474936915348055348