L(s) = 1 | + (−5.60 + 0.765i)2-s + 17.3·3-s + (30.8 − 8.57i)4-s + (−97.0 + 13.2i)6-s − 9.19i·7-s + (−166. + 71.6i)8-s + 56.8·9-s + 160. i·11-s + (533. − 148. i)12-s − 368.·13-s + (7.03 + 51.5i)14-s + (876. − 528. i)16-s − 1.26e3i·17-s + (−318. + 43.4i)18-s − 2.48e3i·19-s + ⋯ |
L(s) = 1 | + (−0.990 + 0.135i)2-s + 1.11·3-s + (0.963 − 0.268i)4-s + (−1.10 + 0.150i)6-s − 0.0708i·7-s + (−0.918 + 0.395i)8-s + 0.233·9-s + 0.399i·11-s + (1.07 − 0.297i)12-s − 0.604·13-s + (0.00958 + 0.0702i)14-s + (0.856 − 0.516i)16-s − 1.05i·17-s + (−0.231 + 0.0316i)18-s − 1.58i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0565 + 0.998i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.0565 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.225915788\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.225915788\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (5.60 - 0.765i)T \) |
| 5 | \( 1 \) |
good | 3 | \( 1 - 17.3T + 243T^{2} \) |
| 7 | \( 1 + 9.19iT - 1.68e4T^{2} \) |
| 11 | \( 1 - 160. iT - 1.61e5T^{2} \) |
| 13 | \( 1 + 368.T + 3.71e5T^{2} \) |
| 17 | \( 1 + 1.26e3iT - 1.41e6T^{2} \) |
| 19 | \( 1 + 2.48e3iT - 2.47e6T^{2} \) |
| 23 | \( 1 - 422. iT - 6.43e6T^{2} \) |
| 29 | \( 1 + 5.66e3iT - 2.05e7T^{2} \) |
| 31 | \( 1 - 9.38e3T + 2.86e7T^{2} \) |
| 37 | \( 1 + 3.56e3T + 6.93e7T^{2} \) |
| 41 | \( 1 + 5.94e3T + 1.15e8T^{2} \) |
| 43 | \( 1 + 1.06e4T + 1.47e8T^{2} \) |
| 47 | \( 1 - 9.24e3iT - 2.29e8T^{2} \) |
| 53 | \( 1 + 8.97e3T + 4.18e8T^{2} \) |
| 59 | \( 1 + 2.74e4iT - 7.14e8T^{2} \) |
| 61 | \( 1 + 5.05e4iT - 8.44e8T^{2} \) |
| 67 | \( 1 + 5.96e3T + 1.35e9T^{2} \) |
| 71 | \( 1 - 6.72e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + 8.57e4iT - 2.07e9T^{2} \) |
| 79 | \( 1 + 5.65e4T + 3.07e9T^{2} \) |
| 83 | \( 1 - 3.02e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + 1.13e5T + 5.58e9T^{2} \) |
| 97 | \( 1 + 1.38e5iT - 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.21674490758310487239033165469, −9.871762792024778912064414171280, −9.348925237016177579488179675499, −8.360697776758855776852228950804, −7.52836209191405280782951975617, −6.57868797251436501497605356574, −4.89300183238820448491923779379, −3.02627148606664269833690788294, −2.19104059147723937472580927974, −0.43032889807148529660421991648,
1.46682099910730364225002438531, 2.68415318251682251563530448994, 3.74114700066589416693045636734, 5.80917321002664058443489174106, 7.08864363342897289036343964055, 8.300982659859572060721508250131, 8.539249639978777502820053310504, 9.819217764058962127134790954003, 10.47487686935876802408947811017, 11.77947578501420200223326241220