L(s) = 1 | + (−5.60 + 0.765i)2-s + 17.3·3-s + (30.8 − 8.57i)4-s + (−97.0 + 13.2i)6-s − 9.19i·7-s + (−166. + 71.6i)8-s + 56.8·9-s + 160. i·11-s + (533. − 148. i)12-s − 368.·13-s + (7.03 + 51.5i)14-s + (876. − 528. i)16-s − 1.26e3i·17-s + (−318. + 43.4i)18-s − 2.48e3i·19-s + ⋯ |
L(s) = 1 | + (−0.990 + 0.135i)2-s + 1.11·3-s + (0.963 − 0.268i)4-s + (−1.10 + 0.150i)6-s − 0.0708i·7-s + (−0.918 + 0.395i)8-s + 0.233·9-s + 0.399i·11-s + (1.07 − 0.297i)12-s − 0.604·13-s + (0.00958 + 0.0702i)14-s + (0.856 − 0.516i)16-s − 1.05i·17-s + (−0.231 + 0.0316i)18-s − 1.58i·19-s + ⋯ |
Λ(s)=(=(200s/2ΓC(s)L(s)(−0.0565+0.998i)Λ(6−s)
Λ(s)=(=(200s/2ΓC(s+5/2)L(s)(−0.0565+0.998i)Λ(1−s)
Degree: |
2 |
Conductor: |
200
= 23⋅52
|
Sign: |
−0.0565+0.998i
|
Analytic conductor: |
32.0767 |
Root analytic conductor: |
5.66363 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ200(149,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 200, ( :5/2), −0.0565+0.998i)
|
Particular Values
L(3) |
≈ |
1.225915788 |
L(21) |
≈ |
1.225915788 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(5.60−0.765i)T |
| 5 | 1 |
good | 3 | 1−17.3T+243T2 |
| 7 | 1+9.19iT−1.68e4T2 |
| 11 | 1−160.iT−1.61e5T2 |
| 13 | 1+368.T+3.71e5T2 |
| 17 | 1+1.26e3iT−1.41e6T2 |
| 19 | 1+2.48e3iT−2.47e6T2 |
| 23 | 1−422.iT−6.43e6T2 |
| 29 | 1+5.66e3iT−2.05e7T2 |
| 31 | 1−9.38e3T+2.86e7T2 |
| 37 | 1+3.56e3T+6.93e7T2 |
| 41 | 1+5.94e3T+1.15e8T2 |
| 43 | 1+1.06e4T+1.47e8T2 |
| 47 | 1−9.24e3iT−2.29e8T2 |
| 53 | 1+8.97e3T+4.18e8T2 |
| 59 | 1+2.74e4iT−7.14e8T2 |
| 61 | 1+5.05e4iT−8.44e8T2 |
| 67 | 1+5.96e3T+1.35e9T2 |
| 71 | 1−6.72e4T+1.80e9T2 |
| 73 | 1+8.57e4iT−2.07e9T2 |
| 79 | 1+5.65e4T+3.07e9T2 |
| 83 | 1−3.02e4T+3.93e9T2 |
| 89 | 1+1.13e5T+5.58e9T2 |
| 97 | 1+1.38e5iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.21674490758310487239033165469, −9.871762792024778912064414171280, −9.348925237016177579488179675499, −8.360697776758855776852228950804, −7.52836209191405280782951975617, −6.57868797251436501497605356574, −4.89300183238820448491923779379, −3.02627148606664269833690788294, −2.19104059147723937472580927974, −0.43032889807148529660421991648,
1.46682099910730364225002438531, 2.68415318251682251563530448994, 3.74114700066589416693045636734, 5.80917321002664058443489174106, 7.08864363342897289036343964055, 8.300982659859572060721508250131, 8.539249639978777502820053310504, 9.819217764058962127134790954003, 10.47487686935876802408947811017, 11.77947578501420200223326241220