L(s) = 1 | + (−3.87 + 4.12i)2-s + 18.2·3-s + (−2.00 − 31.9i)4-s + (−70.8 + 75.3i)6-s + 2.25i·7-s + (139. + 115. i)8-s + 91.3·9-s + 419. i·11-s + (−36.6 − 583. i)12-s + 106.·13-s + (−9.30 − 8.73i)14-s + (−1.01e3 + 127. i)16-s − 849. i·17-s + (−353. + 376. i)18-s + 335. i·19-s + ⋯ |
L(s) = 1 | + (−0.684 + 0.728i)2-s + 1.17·3-s + (−0.0625 − 0.998i)4-s + (−0.803 + 0.854i)6-s + 0.0173i·7-s + (0.770 + 0.637i)8-s + 0.375·9-s + 1.04i·11-s + (−0.0734 − 1.17i)12-s + 0.175·13-s + (−0.0126 − 0.0119i)14-s + (−0.992 + 0.124i)16-s − 0.712i·17-s + (−0.257 + 0.273i)18-s + 0.213i·19-s + ⋯ |
Λ(s)=(=(200s/2ΓC(s)L(s)(−0.403−0.914i)Λ(6−s)
Λ(s)=(=(200s/2ΓC(s+5/2)L(s)(−0.403−0.914i)Λ(1−s)
Degree: |
2 |
Conductor: |
200
= 23⋅52
|
Sign: |
−0.403−0.914i
|
Analytic conductor: |
32.0767 |
Root analytic conductor: |
5.66363 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ200(149,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 200, ( :5/2), −0.403−0.914i)
|
Particular Values
L(3) |
≈ |
1.748936853 |
L(21) |
≈ |
1.748936853 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(3.87−4.12i)T |
| 5 | 1 |
good | 3 | 1−18.2T+243T2 |
| 7 | 1−2.25iT−1.68e4T2 |
| 11 | 1−419.iT−1.61e5T2 |
| 13 | 1−106.T+3.71e5T2 |
| 17 | 1+849.iT−1.41e6T2 |
| 19 | 1−335.iT−2.47e6T2 |
| 23 | 1−3.54e3iT−6.43e6T2 |
| 29 | 1−5.20e3iT−2.05e7T2 |
| 31 | 1−5.63e3T+2.86e7T2 |
| 37 | 1+61.9T+6.93e7T2 |
| 41 | 1−1.62e4T+1.15e8T2 |
| 43 | 1−2.41e3T+1.47e8T2 |
| 47 | 1−2.27e4iT−2.29e8T2 |
| 53 | 1+1.36e4T+4.18e8T2 |
| 59 | 1−2.34e4iT−7.14e8T2 |
| 61 | 1−3.34e4iT−8.44e8T2 |
| 67 | 1+6.61e4T+1.35e9T2 |
| 71 | 1+5.14e4T+1.80e9T2 |
| 73 | 1−2.12e4iT−2.07e9T2 |
| 79 | 1+3.84e4T+3.07e9T2 |
| 83 | 1−9.31e4T+3.93e9T2 |
| 89 | 1−6.06e4T+5.58e9T2 |
| 97 | 1+1.57e5iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.80623882411953050216714869229, −10.52444536941850391701623867454, −9.470229599496823795802439142566, −8.979899407503517679321127699996, −7.78748229865208752314679041548, −7.23268057688480453584252795483, −5.79161525250931331495957751071, −4.42827878190827558835473356704, −2.76167325539945230337783813830, −1.41110812247419322215631489183,
0.59521633487709350141530689228, 2.20059524333434645640328131994, 3.15026141554560566253275711032, 4.22477650312082011786470813835, 6.25276012582467654539530878303, 7.76293779531959761338710414003, 8.455313306648328450451045385518, 9.104031937598414937963639832760, 10.22150620321435482775091823815, 11.10037973258859169704634939916