Properties

Label 2-200-40.29-c5-0-32
Degree $2$
Conductor $200$
Sign $-0.403 - 0.914i$
Analytic cond. $32.0767$
Root an. cond. $5.66363$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−3.87 + 4.12i)2-s + 18.2·3-s + (−2.00 − 31.9i)4-s + (−70.8 + 75.3i)6-s + 2.25i·7-s + (139. + 115. i)8-s + 91.3·9-s + 419. i·11-s + (−36.6 − 583. i)12-s + 106.·13-s + (−9.30 − 8.73i)14-s + (−1.01e3 + 127. i)16-s − 849. i·17-s + (−353. + 376. i)18-s + 335. i·19-s + ⋯
L(s)  = 1  + (−0.684 + 0.728i)2-s + 1.17·3-s + (−0.0625 − 0.998i)4-s + (−0.803 + 0.854i)6-s + 0.0173i·7-s + (0.770 + 0.637i)8-s + 0.375·9-s + 1.04i·11-s + (−0.0734 − 1.17i)12-s + 0.175·13-s + (−0.0126 − 0.0119i)14-s + (−0.992 + 0.124i)16-s − 0.712i·17-s + (−0.257 + 0.273i)18-s + 0.213i·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.403 - 0.914i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.403 - 0.914i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(200\)    =    \(2^{3} \cdot 5^{2}\)
Sign: $-0.403 - 0.914i$
Analytic conductor: \(32.0767\)
Root analytic conductor: \(5.66363\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{200} (149, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 200,\ (\ :5/2),\ -0.403 - 0.914i)\)

Particular Values

\(L(3)\) \(\approx\) \(1.748936853\)
\(L(\frac12)\) \(\approx\) \(1.748936853\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (3.87 - 4.12i)T \)
5 \( 1 \)
good3 \( 1 - 18.2T + 243T^{2} \)
7 \( 1 - 2.25iT - 1.68e4T^{2} \)
11 \( 1 - 419. iT - 1.61e5T^{2} \)
13 \( 1 - 106.T + 3.71e5T^{2} \)
17 \( 1 + 849. iT - 1.41e6T^{2} \)
19 \( 1 - 335. iT - 2.47e6T^{2} \)
23 \( 1 - 3.54e3iT - 6.43e6T^{2} \)
29 \( 1 - 5.20e3iT - 2.05e7T^{2} \)
31 \( 1 - 5.63e3T + 2.86e7T^{2} \)
37 \( 1 + 61.9T + 6.93e7T^{2} \)
41 \( 1 - 1.62e4T + 1.15e8T^{2} \)
43 \( 1 - 2.41e3T + 1.47e8T^{2} \)
47 \( 1 - 2.27e4iT - 2.29e8T^{2} \)
53 \( 1 + 1.36e4T + 4.18e8T^{2} \)
59 \( 1 - 2.34e4iT - 7.14e8T^{2} \)
61 \( 1 - 3.34e4iT - 8.44e8T^{2} \)
67 \( 1 + 6.61e4T + 1.35e9T^{2} \)
71 \( 1 + 5.14e4T + 1.80e9T^{2} \)
73 \( 1 - 2.12e4iT - 2.07e9T^{2} \)
79 \( 1 + 3.84e4T + 3.07e9T^{2} \)
83 \( 1 - 9.31e4T + 3.93e9T^{2} \)
89 \( 1 - 6.06e4T + 5.58e9T^{2} \)
97 \( 1 + 1.57e5iT - 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.80623882411953050216714869229, −10.52444536941850391701623867454, −9.470229599496823795802439142566, −8.979899407503517679321127699996, −7.78748229865208752314679041548, −7.23268057688480453584252795483, −5.79161525250931331495957751071, −4.42827878190827558835473356704, −2.76167325539945230337783813830, −1.41110812247419322215631489183, 0.59521633487709350141530689228, 2.20059524333434645640328131994, 3.15026141554560566253275711032, 4.22477650312082011786470813835, 6.25276012582467654539530878303, 7.76293779531959761338710414003, 8.455313306648328450451045385518, 9.104031937598414937963639832760, 10.22150620321435482775091823815, 11.10037973258859169704634939916

Graph of the $Z$-function along the critical line