L(s) = 1 | + (1.74 − 5.37i)2-s + 25.2·3-s + (−25.8 − 18.8i)4-s + (44.2 − 135. i)6-s + 185. i·7-s + (−146. + 106. i)8-s + 395.·9-s + 574. i·11-s + (−653. − 475. i)12-s + 65.8·13-s + (996. + 324. i)14-s + (315. + 974. i)16-s + 1.96e3i·17-s + (691. − 2.12e3i)18-s + 611. i·19-s + ⋯ |
L(s) = 1 | + (0.309 − 0.950i)2-s + 1.62·3-s + (−0.808 − 0.588i)4-s + (0.501 − 1.54i)6-s + 1.42i·7-s + (−0.809 + 0.587i)8-s + 1.62·9-s + 1.43i·11-s + (−1.31 − 0.953i)12-s + 0.108·13-s + (1.35 + 0.441i)14-s + (0.307 + 0.951i)16-s + 1.65i·17-s + (0.503 − 1.54i)18-s + 0.388i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.986 - 0.162i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.986 - 0.162i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(3.497804899\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.497804899\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.74 + 5.37i)T \) |
| 5 | \( 1 \) |
good | 3 | \( 1 - 25.2T + 243T^{2} \) |
| 7 | \( 1 - 185. iT - 1.68e4T^{2} \) |
| 11 | \( 1 - 574. iT - 1.61e5T^{2} \) |
| 13 | \( 1 - 65.8T + 3.71e5T^{2} \) |
| 17 | \( 1 - 1.96e3iT - 1.41e6T^{2} \) |
| 19 | \( 1 - 611. iT - 2.47e6T^{2} \) |
| 23 | \( 1 + 2.97e3iT - 6.43e6T^{2} \) |
| 29 | \( 1 + 4.47e3iT - 2.05e7T^{2} \) |
| 31 | \( 1 - 7.72e3T + 2.86e7T^{2} \) |
| 37 | \( 1 + 7.28e3T + 6.93e7T^{2} \) |
| 41 | \( 1 + 6.22e3T + 1.15e8T^{2} \) |
| 43 | \( 1 + 1.43e4T + 1.47e8T^{2} \) |
| 47 | \( 1 - 5.91e3iT - 2.29e8T^{2} \) |
| 53 | \( 1 - 2.06e4T + 4.18e8T^{2} \) |
| 59 | \( 1 + 1.24e4iT - 7.14e8T^{2} \) |
| 61 | \( 1 + 1.98e4iT - 8.44e8T^{2} \) |
| 67 | \( 1 - 5.62e4T + 1.35e9T^{2} \) |
| 71 | \( 1 + 5.57e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + 3.79e3iT - 2.07e9T^{2} \) |
| 79 | \( 1 - 7.40e4T + 3.07e9T^{2} \) |
| 83 | \( 1 - 1.17e5T + 3.93e9T^{2} \) |
| 89 | \( 1 - 2.81e4T + 5.58e9T^{2} \) |
| 97 | \( 1 - 3.89e4iT - 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.99101844585291883577638892275, −10.32706161904429318524041890249, −9.670113865997665811749066936242, −8.651364245424109643631983541680, −8.165990347948864355467582653616, −6.31580245522099844779452226328, −4.76439916900224227427283728387, −3.64112106610417110508069542603, −2.39825166664391482985037810403, −1.85392554923913396798296868579,
0.796336946686190108701030226472, 3.07533728115853232899482053389, 3.72498973378529069129259579317, 5.04908833230467166748975692856, 6.78954369425500017572197797618, 7.50626901821373586014936085428, 8.401024585847149342881336398717, 9.178527058111054720622550393708, 10.20645887505308577982058498091, 11.67857067066579992468232810335