L(s) = 1 | + (1.74 − 5.37i)2-s + 25.2·3-s + (−25.8 − 18.8i)4-s + (44.2 − 135. i)6-s + 185. i·7-s + (−146. + 106. i)8-s + 395.·9-s + 574. i·11-s + (−653. − 475. i)12-s + 65.8·13-s + (996. + 324. i)14-s + (315. + 974. i)16-s + 1.96e3i·17-s + (691. − 2.12e3i)18-s + 611. i·19-s + ⋯ |
L(s) = 1 | + (0.309 − 0.950i)2-s + 1.62·3-s + (−0.808 − 0.588i)4-s + (0.501 − 1.54i)6-s + 1.42i·7-s + (−0.809 + 0.587i)8-s + 1.62·9-s + 1.43i·11-s + (−1.31 − 0.953i)12-s + 0.108·13-s + (1.35 + 0.441i)14-s + (0.307 + 0.951i)16-s + 1.65i·17-s + (0.503 − 1.54i)18-s + 0.388i·19-s + ⋯ |
Λ(s)=(=(200s/2ΓC(s)L(s)(0.986−0.162i)Λ(6−s)
Λ(s)=(=(200s/2ΓC(s+5/2)L(s)(0.986−0.162i)Λ(1−s)
Degree: |
2 |
Conductor: |
200
= 23⋅52
|
Sign: |
0.986−0.162i
|
Analytic conductor: |
32.0767 |
Root analytic conductor: |
5.66363 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ200(149,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 200, ( :5/2), 0.986−0.162i)
|
Particular Values
L(3) |
≈ |
3.497804899 |
L(21) |
≈ |
3.497804899 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.74+5.37i)T |
| 5 | 1 |
good | 3 | 1−25.2T+243T2 |
| 7 | 1−185.iT−1.68e4T2 |
| 11 | 1−574.iT−1.61e5T2 |
| 13 | 1−65.8T+3.71e5T2 |
| 17 | 1−1.96e3iT−1.41e6T2 |
| 19 | 1−611.iT−2.47e6T2 |
| 23 | 1+2.97e3iT−6.43e6T2 |
| 29 | 1+4.47e3iT−2.05e7T2 |
| 31 | 1−7.72e3T+2.86e7T2 |
| 37 | 1+7.28e3T+6.93e7T2 |
| 41 | 1+6.22e3T+1.15e8T2 |
| 43 | 1+1.43e4T+1.47e8T2 |
| 47 | 1−5.91e3iT−2.29e8T2 |
| 53 | 1−2.06e4T+4.18e8T2 |
| 59 | 1+1.24e4iT−7.14e8T2 |
| 61 | 1+1.98e4iT−8.44e8T2 |
| 67 | 1−5.62e4T+1.35e9T2 |
| 71 | 1+5.57e4T+1.80e9T2 |
| 73 | 1+3.79e3iT−2.07e9T2 |
| 79 | 1−7.40e4T+3.07e9T2 |
| 83 | 1−1.17e5T+3.93e9T2 |
| 89 | 1−2.81e4T+5.58e9T2 |
| 97 | 1−3.89e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.99101844585291883577638892275, −10.32706161904429318524041890249, −9.670113865997665811749066936242, −8.651364245424109643631983541680, −8.165990347948864355467582653616, −6.31580245522099844779452226328, −4.76439916900224227427283728387, −3.64112106610417110508069542603, −2.39825166664391482985037810403, −1.85392554923913396798296868579,
0.796336946686190108701030226472, 3.07533728115853232899482053389, 3.72498973378529069129259579317, 5.04908833230467166748975692856, 6.78954369425500017572197797618, 7.50626901821373586014936085428, 8.401024585847149342881336398717, 9.178527058111054720622550393708, 10.20645887505308577982058498091, 11.67857067066579992468232810335