L(s) = 1 | + (4.94 + 2.74i)2-s + 23.5·3-s + (16.8 + 27.1i)4-s + (116. + 64.7i)6-s + 39.5i·7-s + (8.81 + 180. i)8-s + 311.·9-s − 236. i·11-s + (397. + 639. i)12-s + 942.·13-s + (−108. + 195. i)14-s + (−453. + 918. i)16-s − 1.10e3i·17-s + (1.53e3 + 856. i)18-s + 2.31e3i·19-s + ⋯ |
L(s) = 1 | + (0.874 + 0.485i)2-s + 1.51·3-s + (0.527 + 0.849i)4-s + (1.32 + 0.733i)6-s + 0.305i·7-s + (0.0486 + 0.998i)8-s + 1.28·9-s − 0.589i·11-s + (0.797 + 1.28i)12-s + 1.54·13-s + (−0.148 + 0.266i)14-s + (−0.442 + 0.896i)16-s − 0.925i·17-s + (1.12 + 0.622i)18-s + 1.47i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.403 - 0.915i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.403 - 0.915i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(5.974087753\) |
\(L(\frac12)\) |
\(\approx\) |
\(5.974087753\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-4.94 - 2.74i)T \) |
| 5 | \( 1 \) |
good | 3 | \( 1 - 23.5T + 243T^{2} \) |
| 7 | \( 1 - 39.5iT - 1.68e4T^{2} \) |
| 11 | \( 1 + 236. iT - 1.61e5T^{2} \) |
| 13 | \( 1 - 942.T + 3.71e5T^{2} \) |
| 17 | \( 1 + 1.10e3iT - 1.41e6T^{2} \) |
| 19 | \( 1 - 2.31e3iT - 2.47e6T^{2} \) |
| 23 | \( 1 - 861. iT - 6.43e6T^{2} \) |
| 29 | \( 1 - 1.66e3iT - 2.05e7T^{2} \) |
| 31 | \( 1 + 4.18e3T + 2.86e7T^{2} \) |
| 37 | \( 1 - 1.45e4T + 6.93e7T^{2} \) |
| 41 | \( 1 + 2.00e4T + 1.15e8T^{2} \) |
| 43 | \( 1 + 5.24e3T + 1.47e8T^{2} \) |
| 47 | \( 1 + 2.16e4iT - 2.29e8T^{2} \) |
| 53 | \( 1 + 1.49e4T + 4.18e8T^{2} \) |
| 59 | \( 1 + 4.24e4iT - 7.14e8T^{2} \) |
| 61 | \( 1 + 3.11e4iT - 8.44e8T^{2} \) |
| 67 | \( 1 + 2.78e4T + 1.35e9T^{2} \) |
| 71 | \( 1 - 4.23e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + 1.17e4iT - 2.07e9T^{2} \) |
| 79 | \( 1 - 6.98e4T + 3.07e9T^{2} \) |
| 83 | \( 1 + 6.45e3T + 3.93e9T^{2} \) |
| 89 | \( 1 + 2.56e4T + 5.58e9T^{2} \) |
| 97 | \( 1 - 1.51e5iT - 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.01111849326713233366252608296, −10.95287543930087956953689542476, −9.433711677132999338213710325691, −8.426986814726835929080934231098, −7.919343978201733881988276299687, −6.58756314737593498305679988668, −5.43196443524764680544740084551, −3.79536470089855203791602441131, −3.21636302404407496970634896658, −1.82940664296443008607828149098,
1.32122389604748337673496048353, 2.52550865256725532870674391186, 3.60433716391253172123757477085, 4.47041793696328614695262569853, 6.14239880411160770018495813406, 7.29936796933131473106335123276, 8.510549476037181597073523464986, 9.412765549620005320602485278627, 10.49654078174791012693643698352, 11.39991002522366641352963003020