L(s) = 1 | + (−0.809 + 0.587i)9-s + (1.53 − 1.11i)13-s + (0.363 − 1.11i)17-s + (0.5 + 1.53i)29-s + (0.951 − 0.690i)37-s + (0.5 − 0.363i)41-s + 49-s + (0.587 + 1.80i)53-s + (0.5 + 0.363i)61-s + (−1.53 − 1.11i)73-s + (0.309 − 0.951i)81-s + (−1.30 − 0.951i)89-s + (−0.363 − 1.11i)97-s − 1.61·101-s + (−0.5 + 0.363i)109-s + ⋯ |
L(s) = 1 | + (−0.809 + 0.587i)9-s + (1.53 − 1.11i)13-s + (0.363 − 1.11i)17-s + (0.5 + 1.53i)29-s + (0.951 − 0.690i)37-s + (0.5 − 0.363i)41-s + 49-s + (0.587 + 1.80i)53-s + (0.5 + 0.363i)61-s + (−1.53 − 1.11i)73-s + (0.309 − 0.951i)81-s + (−1.30 − 0.951i)89-s + (−0.363 − 1.11i)97-s − 1.61·101-s + (−0.5 + 0.363i)109-s + ⋯ |
Λ(s)=(=(2000s/2ΓC(s)L(s)(0.979+0.199i)Λ(1−s)
Λ(s)=(=(2000s/2ΓC(s)L(s)(0.979+0.199i)Λ(1−s)
Degree: |
2 |
Conductor: |
2000
= 24⋅53
|
Sign: |
0.979+0.199i
|
Analytic conductor: |
0.998130 |
Root analytic conductor: |
0.999064 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2000(1951,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2000, ( :0), 0.979+0.199i)
|
Particular Values
L(21) |
≈ |
1.180549610 |
L(21) |
≈ |
1.180549610 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+(0.809−0.587i)T2 |
| 7 | 1−T2 |
| 11 | 1+(−0.309−0.951i)T2 |
| 13 | 1+(−1.53+1.11i)T+(0.309−0.951i)T2 |
| 17 | 1+(−0.363+1.11i)T+(−0.809−0.587i)T2 |
| 19 | 1+(0.809+0.587i)T2 |
| 23 | 1+(−0.309−0.951i)T2 |
| 29 | 1+(−0.5−1.53i)T+(−0.809+0.587i)T2 |
| 31 | 1+(0.809+0.587i)T2 |
| 37 | 1+(−0.951+0.690i)T+(0.309−0.951i)T2 |
| 41 | 1+(−0.5+0.363i)T+(0.309−0.951i)T2 |
| 43 | 1−T2 |
| 47 | 1+(0.809−0.587i)T2 |
| 53 | 1+(−0.587−1.80i)T+(−0.809+0.587i)T2 |
| 59 | 1+(−0.309+0.951i)T2 |
| 61 | 1+(−0.5−0.363i)T+(0.309+0.951i)T2 |
| 67 | 1+(0.809+0.587i)T2 |
| 71 | 1+(0.809−0.587i)T2 |
| 73 | 1+(1.53+1.11i)T+(0.309+0.951i)T2 |
| 79 | 1+(0.809−0.587i)T2 |
| 83 | 1+(0.809+0.587i)T2 |
| 89 | 1+(1.30+0.951i)T+(0.309+0.951i)T2 |
| 97 | 1+(0.363+1.11i)T+(−0.809+0.587i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.087273974785495977407575684248, −8.627316926463935645053576225319, −7.79878855853348385993829684848, −7.09799888914971820749096978003, −5.86422127343905404335648622798, −5.56291498642464817665736578004, −4.47001950527944809916453376928, −3.31713973014315745940680911331, −2.64436361687078856065697842366, −1.07947189691273046784297102945,
1.24532942899974192960484432409, 2.53539253877544544433823084921, 3.71454461794880612354555124373, 4.23363318636722208178866935310, 5.61939153205642139382055891871, 6.20185062744357867077237942918, 6.80394513576726208222619503659, 8.145517420180831267814779765501, 8.456935787466045983137742980224, 9.321307489274425584849652293905