L(s) = 1 | + (−0.809 + 0.587i)9-s + (1.53 − 1.11i)13-s + (0.363 − 1.11i)17-s + (0.5 + 1.53i)29-s + (0.951 − 0.690i)37-s + (0.5 − 0.363i)41-s + 49-s + (0.587 + 1.80i)53-s + (0.5 + 0.363i)61-s + (−1.53 − 1.11i)73-s + (0.309 − 0.951i)81-s + (−1.30 − 0.951i)89-s + (−0.363 − 1.11i)97-s − 1.61·101-s + (−0.5 + 0.363i)109-s + ⋯ |
L(s) = 1 | + (−0.809 + 0.587i)9-s + (1.53 − 1.11i)13-s + (0.363 − 1.11i)17-s + (0.5 + 1.53i)29-s + (0.951 − 0.690i)37-s + (0.5 − 0.363i)41-s + 49-s + (0.587 + 1.80i)53-s + (0.5 + 0.363i)61-s + (−1.53 − 1.11i)73-s + (0.309 − 0.951i)81-s + (−1.30 − 0.951i)89-s + (−0.363 − 1.11i)97-s − 1.61·101-s + (−0.5 + 0.363i)109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.979 + 0.199i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.979 + 0.199i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.180549610\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.180549610\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 7 | \( 1 - T^{2} \) |
| 11 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 13 | \( 1 + (-1.53 + 1.11i)T + (0.309 - 0.951i)T^{2} \) |
| 17 | \( 1 + (-0.363 + 1.11i)T + (-0.809 - 0.587i)T^{2} \) |
| 19 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 23 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 29 | \( 1 + (-0.5 - 1.53i)T + (-0.809 + 0.587i)T^{2} \) |
| 31 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 37 | \( 1 + (-0.951 + 0.690i)T + (0.309 - 0.951i)T^{2} \) |
| 41 | \( 1 + (-0.5 + 0.363i)T + (0.309 - 0.951i)T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 53 | \( 1 + (-0.587 - 1.80i)T + (-0.809 + 0.587i)T^{2} \) |
| 59 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.363i)T + (0.309 + 0.951i)T^{2} \) |
| 67 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 71 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 73 | \( 1 + (1.53 + 1.11i)T + (0.309 + 0.951i)T^{2} \) |
| 79 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 83 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 89 | \( 1 + (1.30 + 0.951i)T + (0.309 + 0.951i)T^{2} \) |
| 97 | \( 1 + (0.363 + 1.11i)T + (-0.809 + 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.087273974785495977407575684248, −8.627316926463935645053576225319, −7.79878855853348385993829684848, −7.09799888914971820749096978003, −5.86422127343905404335648622798, −5.56291498642464817665736578004, −4.47001950527944809916453376928, −3.31713973014315745940680911331, −2.64436361687078856065697842366, −1.07947189691273046784297102945,
1.24532942899974192960484432409, 2.53539253877544544433823084921, 3.71454461794880612354555124373, 4.23363318636722208178866935310, 5.61939153205642139382055891871, 6.20185062744357867077237942918, 6.80394513576726208222619503659, 8.145517420180831267814779765501, 8.456935787466045983137742980224, 9.321307489274425584849652293905