Properties

Label 2-2000-100.91-c0-0-1
Degree $2$
Conductor $2000$
Sign $0.979 + 0.199i$
Analytic cond. $0.998130$
Root an. cond. $0.999064$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.809 + 0.587i)9-s + (1.53 − 1.11i)13-s + (0.363 − 1.11i)17-s + (0.5 + 1.53i)29-s + (0.951 − 0.690i)37-s + (0.5 − 0.363i)41-s + 49-s + (0.587 + 1.80i)53-s + (0.5 + 0.363i)61-s + (−1.53 − 1.11i)73-s + (0.309 − 0.951i)81-s + (−1.30 − 0.951i)89-s + (−0.363 − 1.11i)97-s − 1.61·101-s + (−0.5 + 0.363i)109-s + ⋯
L(s)  = 1  + (−0.809 + 0.587i)9-s + (1.53 − 1.11i)13-s + (0.363 − 1.11i)17-s + (0.5 + 1.53i)29-s + (0.951 − 0.690i)37-s + (0.5 − 0.363i)41-s + 49-s + (0.587 + 1.80i)53-s + (0.5 + 0.363i)61-s + (−1.53 − 1.11i)73-s + (0.309 − 0.951i)81-s + (−1.30 − 0.951i)89-s + (−0.363 − 1.11i)97-s − 1.61·101-s + (−0.5 + 0.363i)109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.979 + 0.199i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.979 + 0.199i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2000\)    =    \(2^{4} \cdot 5^{3}\)
Sign: $0.979 + 0.199i$
Analytic conductor: \(0.998130\)
Root analytic conductor: \(0.999064\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{2000} (1951, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2000,\ (\ :0),\ 0.979 + 0.199i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.180549610\)
\(L(\frac12)\) \(\approx\) \(1.180549610\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + (0.809 - 0.587i)T^{2} \)
7 \( 1 - T^{2} \)
11 \( 1 + (-0.309 - 0.951i)T^{2} \)
13 \( 1 + (-1.53 + 1.11i)T + (0.309 - 0.951i)T^{2} \)
17 \( 1 + (-0.363 + 1.11i)T + (-0.809 - 0.587i)T^{2} \)
19 \( 1 + (0.809 + 0.587i)T^{2} \)
23 \( 1 + (-0.309 - 0.951i)T^{2} \)
29 \( 1 + (-0.5 - 1.53i)T + (-0.809 + 0.587i)T^{2} \)
31 \( 1 + (0.809 + 0.587i)T^{2} \)
37 \( 1 + (-0.951 + 0.690i)T + (0.309 - 0.951i)T^{2} \)
41 \( 1 + (-0.5 + 0.363i)T + (0.309 - 0.951i)T^{2} \)
43 \( 1 - T^{2} \)
47 \( 1 + (0.809 - 0.587i)T^{2} \)
53 \( 1 + (-0.587 - 1.80i)T + (-0.809 + 0.587i)T^{2} \)
59 \( 1 + (-0.309 + 0.951i)T^{2} \)
61 \( 1 + (-0.5 - 0.363i)T + (0.309 + 0.951i)T^{2} \)
67 \( 1 + (0.809 + 0.587i)T^{2} \)
71 \( 1 + (0.809 - 0.587i)T^{2} \)
73 \( 1 + (1.53 + 1.11i)T + (0.309 + 0.951i)T^{2} \)
79 \( 1 + (0.809 - 0.587i)T^{2} \)
83 \( 1 + (0.809 + 0.587i)T^{2} \)
89 \( 1 + (1.30 + 0.951i)T + (0.309 + 0.951i)T^{2} \)
97 \( 1 + (0.363 + 1.11i)T + (-0.809 + 0.587i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.087273974785495977407575684248, −8.627316926463935645053576225319, −7.79878855853348385993829684848, −7.09799888914971820749096978003, −5.86422127343905404335648622798, −5.56291498642464817665736578004, −4.47001950527944809916453376928, −3.31713973014315745940680911331, −2.64436361687078856065697842366, −1.07947189691273046784297102945, 1.24532942899974192960484432409, 2.53539253877544544433823084921, 3.71454461794880612354555124373, 4.23363318636722208178866935310, 5.61939153205642139382055891871, 6.20185062744357867077237942918, 6.80394513576726208222619503659, 8.145517420180831267814779765501, 8.456935787466045983137742980224, 9.321307489274425584849652293905

Graph of the $Z$-function along the critical line