L(s) = 1 | + 3-s + (0.866 − 0.5i)5-s + i·7-s + 9-s + (−0.5 + 0.866i)11-s + (−0.866 − 0.5i)13-s + (0.866 − 0.5i)15-s + (0.5 + 0.866i)17-s + (0.5 − 0.866i)19-s + i·21-s + (−0.866 + 0.5i)23-s + 27-s + (0.866 − 0.5i)29-s + (−0.5 + 0.866i)33-s + (0.5 + 0.866i)35-s + ⋯ |
L(s) = 1 | + 3-s + (0.866 − 0.5i)5-s + i·7-s + 9-s + (−0.5 + 0.866i)11-s + (−0.866 − 0.5i)13-s + (0.866 − 0.5i)15-s + (0.5 + 0.866i)17-s + (0.5 − 0.866i)19-s + i·21-s + (−0.866 + 0.5i)23-s + 27-s + (0.866 − 0.5i)29-s + (−0.5 + 0.866i)33-s + (0.5 + 0.866i)35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2016 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.971 - 0.235i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2016 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.971 - 0.235i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.837293839\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.837293839\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - T \) |
| 7 | \( 1 - iT \) |
good | 5 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + 2iT - T^{2} \) |
| 83 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.288610713980954208986416134120, −8.750519803964511533521267146529, −7.85642503880076709538806310171, −7.27837812691924048384438245103, −6.09101298662472228554498440395, −5.30210141276762484865119996928, −4.62218694574782641427657427006, −3.33093884593254573198025812897, −2.36036768034826701041316288468, −1.76525679679166117442077359939,
1.41357876824931239496654712700, 2.60162087377778855620030738079, 3.25249313304339734490980712099, 4.30597100979190554303236632324, 5.23396914768327144724107978224, 6.36585551168249298336313573523, 7.01367441530388922669129005379, 7.84958737970590527664513956998, 8.379370142379055329173638219724, 9.574122687552991383256865577611