L(s) = 1 | + 3-s + (0.866 − 0.5i)5-s + i·7-s + 9-s + (−0.5 + 0.866i)11-s + (−0.866 − 0.5i)13-s + (0.866 − 0.5i)15-s + (0.5 + 0.866i)17-s + (0.5 − 0.866i)19-s + i·21-s + (−0.866 + 0.5i)23-s + 27-s + (0.866 − 0.5i)29-s + (−0.5 + 0.866i)33-s + (0.5 + 0.866i)35-s + ⋯ |
L(s) = 1 | + 3-s + (0.866 − 0.5i)5-s + i·7-s + 9-s + (−0.5 + 0.866i)11-s + (−0.866 − 0.5i)13-s + (0.866 − 0.5i)15-s + (0.5 + 0.866i)17-s + (0.5 − 0.866i)19-s + i·21-s + (−0.866 + 0.5i)23-s + 27-s + (0.866 − 0.5i)29-s + (−0.5 + 0.866i)33-s + (0.5 + 0.866i)35-s + ⋯ |
Λ(s)=(=(2016s/2ΓC(s)L(s)(0.971−0.235i)Λ(1−s)
Λ(s)=(=(2016s/2ΓC(s)L(s)(0.971−0.235i)Λ(1−s)
Degree: |
2 |
Conductor: |
2016
= 25⋅32⋅7
|
Sign: |
0.971−0.235i
|
Analytic conductor: |
1.00611 |
Root analytic conductor: |
1.00305 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2016(751,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2016, ( :0), 0.971−0.235i)
|
Particular Values
L(21) |
≈ |
1.837293839 |
L(21) |
≈ |
1.837293839 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−T |
| 7 | 1−iT |
good | 5 | 1+(−0.866+0.5i)T+(0.5−0.866i)T2 |
| 11 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 13 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 17 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 19 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 23 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 29 | 1+(−0.866+0.5i)T+(0.5−0.866i)T2 |
| 31 | 1−T2 |
| 37 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 41 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 43 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 47 | 1−T2 |
| 53 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 59 | 1+T2 |
| 61 | 1−T2 |
| 67 | 1+T2 |
| 71 | 1−T2 |
| 73 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 79 | 1+2iT−T2 |
| 83 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 89 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 97 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.288610713980954208986416134120, −8.750519803964511533521267146529, −7.85642503880076709538806310171, −7.27837812691924048384438245103, −6.09101298662472228554498440395, −5.30210141276762484865119996928, −4.62218694574782641427657427006, −3.33093884593254573198025812897, −2.36036768034826701041316288468, −1.76525679679166117442077359939,
1.41357876824931239496654712700, 2.60162087377778855620030738079, 3.25249313304339734490980712099, 4.30597100979190554303236632324, 5.23396914768327144724107978224, 6.36585551168249298336313573523, 7.01367441530388922669129005379, 7.84958737970590527664513956998, 8.379370142379055329173638219724, 9.574122687552991383256865577611