L(s) = 1 | + (−3.09 − 1.78i)5-s + (−0.993 − 2.45i)7-s + (−0.815 + 0.470i)11-s − 6.15i·13-s + (−1.89 − 3.27i)17-s + (−2.09 − 1.20i)19-s + (−1.49 + 2.58i)23-s + (3.90 + 6.75i)25-s − 2.68i·29-s + (5.35 + 9.27i)31-s + (−1.30 + 9.37i)35-s + (−1.47 − 0.853i)37-s + 4.55·41-s + 3.50i·43-s + (3.42 − 5.92i)47-s + ⋯ |
L(s) = 1 | + (−1.38 − 0.800i)5-s + (−0.375 − 0.926i)7-s + (−0.245 + 0.142i)11-s − 1.70i·13-s + (−0.458 − 0.794i)17-s + (−0.479 − 0.276i)19-s + (−0.311 + 0.539i)23-s + (0.780 + 1.35i)25-s − 0.497i·29-s + (0.962 + 1.66i)31-s + (−0.221 + 1.58i)35-s + (−0.243 − 0.140i)37-s + 0.712·41-s + 0.534i·43-s + (0.499 − 0.864i)47-s + ⋯ |
Λ(s)=(=(2016s/2ΓC(s)L(s)(−0.550−0.834i)Λ(2−s)
Λ(s)=(=(2016s/2ΓC(s+1/2)L(s)(−0.550−0.834i)Λ(1−s)
Degree: |
2 |
Conductor: |
2016
= 25⋅32⋅7
|
Sign: |
−0.550−0.834i
|
Analytic conductor: |
16.0978 |
Root analytic conductor: |
4.01221 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2016(1297,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2016, ( :1/2), −0.550−0.834i)
|
Particular Values
L(1) |
≈ |
0.2189902541 |
L(21) |
≈ |
0.2189902541 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(0.993+2.45i)T |
good | 5 | 1+(3.09+1.78i)T+(2.5+4.33i)T2 |
| 11 | 1+(0.815−0.470i)T+(5.5−9.52i)T2 |
| 13 | 1+6.15iT−13T2 |
| 17 | 1+(1.89+3.27i)T+(−8.5+14.7i)T2 |
| 19 | 1+(2.09+1.20i)T+(9.5+16.4i)T2 |
| 23 | 1+(1.49−2.58i)T+(−11.5−19.9i)T2 |
| 29 | 1+2.68iT−29T2 |
| 31 | 1+(−5.35−9.27i)T+(−15.5+26.8i)T2 |
| 37 | 1+(1.47+0.853i)T+(18.5+32.0i)T2 |
| 41 | 1−4.55T+41T2 |
| 43 | 1−3.50iT−43T2 |
| 47 | 1+(−3.42+5.92i)T+(−23.5−40.7i)T2 |
| 53 | 1+(6.57−3.79i)T+(26.5−45.8i)T2 |
| 59 | 1+(−0.100+0.0580i)T+(29.5−51.0i)T2 |
| 61 | 1+(7.06+4.07i)T+(30.5+52.8i)T2 |
| 67 | 1+(−3.44+1.98i)T+(33.5−58.0i)T2 |
| 71 | 1+3.92T+71T2 |
| 73 | 1+(3.11+5.39i)T+(−36.5+63.2i)T2 |
| 79 | 1+(2.73−4.73i)T+(−39.5−68.4i)T2 |
| 83 | 1−1.19iT−83T2 |
| 89 | 1+(0.910−1.57i)T+(−44.5−77.0i)T2 |
| 97 | 1−12.0T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.469360453646926121215598893786, −7.80363454787156933830160529772, −7.36439248776337786132452335751, −6.36228938578472802156740149830, −5.14787700090367292553681660381, −4.55673175891771799386234746683, −3.66628838584589434476343249611, −2.88124830988028118405531493210, −0.987345270150443266771459939789, −0.095540317539969997267137557944,
2.04145193610057444723399261768, 2.94919844914497573069756586049, 4.02037674503992543534092747350, 4.48229280632995034050460360217, 5.97788128749959610023222458700, 6.50579238197460407885962899498, 7.30450565903187825700262694589, 8.167131384333525186774040394773, 8.745335682643055097290101004844, 9.569082324457402548038006895224