L(s) = 1 | + (−3.09 − 1.78i)5-s + (−0.993 − 2.45i)7-s + (−0.815 + 0.470i)11-s − 6.15i·13-s + (−1.89 − 3.27i)17-s + (−2.09 − 1.20i)19-s + (−1.49 + 2.58i)23-s + (3.90 + 6.75i)25-s − 2.68i·29-s + (5.35 + 9.27i)31-s + (−1.30 + 9.37i)35-s + (−1.47 − 0.853i)37-s + 4.55·41-s + 3.50i·43-s + (3.42 − 5.92i)47-s + ⋯ |
L(s) = 1 | + (−1.38 − 0.800i)5-s + (−0.375 − 0.926i)7-s + (−0.245 + 0.142i)11-s − 1.70i·13-s + (−0.458 − 0.794i)17-s + (−0.479 − 0.276i)19-s + (−0.311 + 0.539i)23-s + (0.780 + 1.35i)25-s − 0.497i·29-s + (0.962 + 1.66i)31-s + (−0.221 + 1.58i)35-s + (−0.243 − 0.140i)37-s + 0.712·41-s + 0.534i·43-s + (0.499 − 0.864i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2016 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.550 - 0.834i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2016 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.550 - 0.834i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.2189902541\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2189902541\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (0.993 + 2.45i)T \) |
good | 5 | \( 1 + (3.09 + 1.78i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (0.815 - 0.470i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 6.15iT - 13T^{2} \) |
| 17 | \( 1 + (1.89 + 3.27i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.09 + 1.20i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.49 - 2.58i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 2.68iT - 29T^{2} \) |
| 31 | \( 1 + (-5.35 - 9.27i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (1.47 + 0.853i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 4.55T + 41T^{2} \) |
| 43 | \( 1 - 3.50iT - 43T^{2} \) |
| 47 | \( 1 + (-3.42 + 5.92i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (6.57 - 3.79i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.100 + 0.0580i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (7.06 + 4.07i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.44 + 1.98i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 3.92T + 71T^{2} \) |
| 73 | \( 1 + (3.11 + 5.39i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (2.73 - 4.73i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 1.19iT - 83T^{2} \) |
| 89 | \( 1 + (0.910 - 1.57i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 12.0T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.469360453646926121215598893786, −7.80363454787156933830160529772, −7.36439248776337786132452335751, −6.36228938578472802156740149830, −5.14787700090367292553681660381, −4.55673175891771799386234746683, −3.66628838584589434476343249611, −2.88124830988028118405531493210, −0.987345270150443266771459939789, −0.095540317539969997267137557944,
2.04145193610057444723399261768, 2.94919844914497573069756586049, 4.02037674503992543534092747350, 4.48229280632995034050460360217, 5.97788128749959610023222458700, 6.50579238197460407885962899498, 7.30450565903187825700262694589, 8.167131384333525186774040394773, 8.745335682643055097290101004844, 9.569082324457402548038006895224