L(s) = 1 | + (−1.98 − 1.14i)5-s + (1.05 + 2.42i)7-s + (3.36 − 1.94i)11-s + 3.33i·13-s + (0.143 + 0.248i)17-s + (−2.41 − 1.39i)19-s + (−3.26 + 5.65i)23-s + (0.132 + 0.229i)25-s − 5.53i·29-s + (3.72 + 6.44i)31-s + (0.684 − 6.03i)35-s + (−5.15 − 2.97i)37-s + 3.51·41-s + 11.2i·43-s + (−0.0435 + 0.0753i)47-s + ⋯ |
L(s) = 1 | + (−0.888 − 0.513i)5-s + (0.399 + 0.916i)7-s + (1.01 − 0.585i)11-s + 0.924i·13-s + (0.0348 + 0.0603i)17-s + (−0.553 − 0.319i)19-s + (−0.681 + 1.17i)23-s + (0.0265 + 0.0459i)25-s − 1.02i·29-s + (0.668 + 1.15i)31-s + (0.115 − 1.01i)35-s + (−0.847 − 0.489i)37-s + 0.549·41-s + 1.71i·43-s + (−0.00634 + 0.0109i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2016 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.249 - 0.968i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2016 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.249 - 0.968i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.265885929\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.265885929\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-1.05 - 2.42i)T \) |
good | 5 | \( 1 + (1.98 + 1.14i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-3.36 + 1.94i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 3.33iT - 13T^{2} \) |
| 17 | \( 1 + (-0.143 - 0.248i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.41 + 1.39i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (3.26 - 5.65i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 5.53iT - 29T^{2} \) |
| 31 | \( 1 + (-3.72 - 6.44i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (5.15 + 2.97i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 3.51T + 41T^{2} \) |
| 43 | \( 1 - 11.2iT - 43T^{2} \) |
| 47 | \( 1 + (0.0435 - 0.0753i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-6.11 + 3.52i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (3.76 - 2.17i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.20 - 3.58i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-11.2 + 6.51i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 6.18T + 71T^{2} \) |
| 73 | \( 1 + (-6.93 - 12.0i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (4.49 - 7.79i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 17.6iT - 83T^{2} \) |
| 89 | \( 1 + (8.59 - 14.8i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 6.46T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.180942602151750218014161574690, −8.455417427413407321195853142830, −8.047974729162207124406687574592, −6.91666141276085887136827553908, −6.17320089707176136304231873960, −5.26804573646279007524616449621, −4.30431167553405272204026809698, −3.72544722128777305718907154579, −2.39090754227849804580591932239, −1.21628276344347543894696023923,
0.50644242609538686433362103519, 1.92910518436731655474874149213, 3.30789156595552113746421595776, 4.02816267087850774593030575579, 4.67339051501010636505537032913, 5.91152491744437350105304157805, 6.86608328233631409986248997240, 7.36003515757297949690245172348, 8.135654200346407058011343257447, 8.803955549106158534372107711257