L(s) = 1 | + (−1.98 − 1.14i)5-s + (1.05 + 2.42i)7-s + (3.36 − 1.94i)11-s + 3.33i·13-s + (0.143 + 0.248i)17-s + (−2.41 − 1.39i)19-s + (−3.26 + 5.65i)23-s + (0.132 + 0.229i)25-s − 5.53i·29-s + (3.72 + 6.44i)31-s + (0.684 − 6.03i)35-s + (−5.15 − 2.97i)37-s + 3.51·41-s + 11.2i·43-s + (−0.0435 + 0.0753i)47-s + ⋯ |
L(s) = 1 | + (−0.888 − 0.513i)5-s + (0.399 + 0.916i)7-s + (1.01 − 0.585i)11-s + 0.924i·13-s + (0.0348 + 0.0603i)17-s + (−0.553 − 0.319i)19-s + (−0.681 + 1.17i)23-s + (0.0265 + 0.0459i)25-s − 1.02i·29-s + (0.668 + 1.15i)31-s + (0.115 − 1.01i)35-s + (−0.847 − 0.489i)37-s + 0.549·41-s + 1.71i·43-s + (−0.00634 + 0.0109i)47-s + ⋯ |
Λ(s)=(=(2016s/2ΓC(s)L(s)(0.249−0.968i)Λ(2−s)
Λ(s)=(=(2016s/2ΓC(s+1/2)L(s)(0.249−0.968i)Λ(1−s)
Degree: |
2 |
Conductor: |
2016
= 25⋅32⋅7
|
Sign: |
0.249−0.968i
|
Analytic conductor: |
16.0978 |
Root analytic conductor: |
4.01221 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2016(1297,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2016, ( :1/2), 0.249−0.968i)
|
Particular Values
L(1) |
≈ |
1.265885929 |
L(21) |
≈ |
1.265885929 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(−1.05−2.42i)T |
good | 5 | 1+(1.98+1.14i)T+(2.5+4.33i)T2 |
| 11 | 1+(−3.36+1.94i)T+(5.5−9.52i)T2 |
| 13 | 1−3.33iT−13T2 |
| 17 | 1+(−0.143−0.248i)T+(−8.5+14.7i)T2 |
| 19 | 1+(2.41+1.39i)T+(9.5+16.4i)T2 |
| 23 | 1+(3.26−5.65i)T+(−11.5−19.9i)T2 |
| 29 | 1+5.53iT−29T2 |
| 31 | 1+(−3.72−6.44i)T+(−15.5+26.8i)T2 |
| 37 | 1+(5.15+2.97i)T+(18.5+32.0i)T2 |
| 41 | 1−3.51T+41T2 |
| 43 | 1−11.2iT−43T2 |
| 47 | 1+(0.0435−0.0753i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−6.11+3.52i)T+(26.5−45.8i)T2 |
| 59 | 1+(3.76−2.17i)T+(29.5−51.0i)T2 |
| 61 | 1+(−6.20−3.58i)T+(30.5+52.8i)T2 |
| 67 | 1+(−11.2+6.51i)T+(33.5−58.0i)T2 |
| 71 | 1+6.18T+71T2 |
| 73 | 1+(−6.93−12.0i)T+(−36.5+63.2i)T2 |
| 79 | 1+(4.49−7.79i)T+(−39.5−68.4i)T2 |
| 83 | 1−17.6iT−83T2 |
| 89 | 1+(8.59−14.8i)T+(−44.5−77.0i)T2 |
| 97 | 1−6.46T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.180942602151750218014161574690, −8.455417427413407321195853142830, −8.047974729162207124406687574592, −6.91666141276085887136827553908, −6.17320089707176136304231873960, −5.26804573646279007524616449621, −4.30431167553405272204026809698, −3.72544722128777305718907154579, −2.39090754227849804580591932239, −1.21628276344347543894696023923,
0.50644242609538686433362103519, 1.92910518436731655474874149213, 3.30789156595552113746421595776, 4.02816267087850774593030575579, 4.67339051501010636505537032913, 5.91152491744437350105304157805, 6.86608328233631409986248997240, 7.36003515757297949690245172348, 8.135654200346407058011343257447, 8.803955549106158534372107711257