L(s) = 1 | + (−1.56 + 0.902i)5-s + (−2.63 − 0.217i)7-s + (−4.48 − 2.58i)11-s + 0.840i·13-s + (−2.45 + 4.25i)17-s + (4.87 − 2.81i)19-s + (3.05 + 5.28i)23-s + (−0.872 + 1.51i)25-s − 0.439i·29-s + (3.66 − 6.35i)31-s + (4.31 − 2.03i)35-s + (4.56 − 2.63i)37-s + 6.23·41-s − 7.34i·43-s + (−2.83 − 4.91i)47-s + ⋯ |
L(s) = 1 | + (−0.698 + 0.403i)5-s + (−0.996 − 0.0820i)7-s + (−1.35 − 0.779i)11-s + 0.232i·13-s + (−0.595 + 1.03i)17-s + (1.11 − 0.646i)19-s + (0.636 + 1.10i)23-s + (−0.174 + 0.302i)25-s − 0.0816i·29-s + (0.658 − 1.14i)31-s + (0.729 − 0.344i)35-s + (0.750 − 0.433i)37-s + 0.974·41-s − 1.12i·43-s + (−0.413 − 0.716i)47-s + ⋯ |
Λ(s)=(=(2016s/2ΓC(s)L(s)(0.944+0.329i)Λ(2−s)
Λ(s)=(=(2016s/2ΓC(s+1/2)L(s)(0.944+0.329i)Λ(1−s)
Degree: |
2 |
Conductor: |
2016
= 25⋅32⋅7
|
Sign: |
0.944+0.329i
|
Analytic conductor: |
16.0978 |
Root analytic conductor: |
4.01221 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2016(1873,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2016, ( :1/2), 0.944+0.329i)
|
Particular Values
L(1) |
≈ |
0.9628355367 |
L(21) |
≈ |
0.9628355367 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(2.63+0.217i)T |
good | 5 | 1+(1.56−0.902i)T+(2.5−4.33i)T2 |
| 11 | 1+(4.48+2.58i)T+(5.5+9.52i)T2 |
| 13 | 1−0.840iT−13T2 |
| 17 | 1+(2.45−4.25i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−4.87+2.81i)T+(9.5−16.4i)T2 |
| 23 | 1+(−3.05−5.28i)T+(−11.5+19.9i)T2 |
| 29 | 1+0.439iT−29T2 |
| 31 | 1+(−3.66+6.35i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−4.56+2.63i)T+(18.5−32.0i)T2 |
| 41 | 1−6.23T+41T2 |
| 43 | 1+7.34iT−43T2 |
| 47 | 1+(2.83+4.91i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−1.15−0.669i)T+(26.5+45.8i)T2 |
| 59 | 1+(7.31+4.22i)T+(29.5+51.0i)T2 |
| 61 | 1+(−4.77+2.75i)T+(30.5−52.8i)T2 |
| 67 | 1+(0.647+0.373i)T+(33.5+58.0i)T2 |
| 71 | 1−9.08T+71T2 |
| 73 | 1+(−3.70+6.42i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−8.68−15.0i)T+(−39.5+68.4i)T2 |
| 83 | 1+1.45iT−83T2 |
| 89 | 1+(−3.10−5.37i)T+(−44.5+77.0i)T2 |
| 97 | 1+5.81T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.223044586864097454138993014638, −8.160120466880479903545850625793, −7.59510434321051968362106188195, −6.83278464270357073142677451253, −5.93570905232611173768601452731, −5.19911136692819664809890184172, −3.93397141523609961426310418601, −3.29416279509661885352814792642, −2.41257041107247033947309585816, −0.53798277873867917655961827067,
0.73137639419325880759795266377, 2.56066362397033143114884649117, 3.16358920622910205488037254709, 4.46815044917388350287662360637, 4.98454643009237927242169869094, 6.04444774397681339384685905792, 6.96262706379756645087635972680, 7.65735816340138737147085560154, 8.309443735393178186533612510317, 9.276655324239516876653548143709