Properties

Label 2-45e2-225.146-c0-0-0
Degree $2$
Conductor $2025$
Sign $0.432 - 0.901i$
Analytic cond. $1.01060$
Root an. cond. $1.00528$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.459 + 0.413i)2-s + (−0.0646 + 0.614i)4-s + (−0.743 − 0.669i)5-s + (−0.309 + 0.535i)7-s + (−0.587 − 0.809i)8-s + 0.618·10-s + (0.743 − 0.669i)11-s + (−0.0794 − 0.373i)14-s + (0.587 + 0.809i)17-s + (0.809 − 0.587i)19-s + (0.459 − 0.413i)20-s + (−0.0646 + 0.614i)22-s + (0.207 + 0.978i)23-s + (0.104 + 0.994i)25-s + (−0.309 − 0.224i)28-s + (−0.658 − 1.47i)29-s + ⋯
L(s)  = 1  + (−0.459 + 0.413i)2-s + (−0.0646 + 0.614i)4-s + (−0.743 − 0.669i)5-s + (−0.309 + 0.535i)7-s + (−0.587 − 0.809i)8-s + 0.618·10-s + (0.743 − 0.669i)11-s + (−0.0794 − 0.373i)14-s + (0.587 + 0.809i)17-s + (0.809 − 0.587i)19-s + (0.459 − 0.413i)20-s + (−0.0646 + 0.614i)22-s + (0.207 + 0.978i)23-s + (0.104 + 0.994i)25-s + (−0.309 − 0.224i)28-s + (−0.658 − 1.47i)29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.432 - 0.901i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.432 - 0.901i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2025\)    =    \(3^{4} \cdot 5^{2}\)
Sign: $0.432 - 0.901i$
Analytic conductor: \(1.01060\)
Root analytic conductor: \(1.00528\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{2025} (1646, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2025,\ (\ :0),\ 0.432 - 0.901i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.7478213715\)
\(L(\frac12)\) \(\approx\) \(0.7478213715\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (0.743 + 0.669i)T \)
good2 \( 1 + (0.459 - 0.413i)T + (0.104 - 0.994i)T^{2} \)
7 \( 1 + (0.309 - 0.535i)T + (-0.5 - 0.866i)T^{2} \)
11 \( 1 + (-0.743 + 0.669i)T + (0.104 - 0.994i)T^{2} \)
13 \( 1 + (-0.104 - 0.994i)T^{2} \)
17 \( 1 + (-0.587 - 0.809i)T + (-0.309 + 0.951i)T^{2} \)
19 \( 1 + (-0.809 + 0.587i)T + (0.309 - 0.951i)T^{2} \)
23 \( 1 + (-0.207 - 0.978i)T + (-0.913 + 0.406i)T^{2} \)
29 \( 1 + (0.658 + 1.47i)T + (-0.669 + 0.743i)T^{2} \)
31 \( 1 + (0.669 + 0.743i)T^{2} \)
37 \( 1 + (-0.5 - 1.53i)T + (-0.809 + 0.587i)T^{2} \)
41 \( 1 + (-0.743 - 0.669i)T + (0.104 + 0.994i)T^{2} \)
43 \( 1 + (-0.5 - 0.866i)T^{2} \)
47 \( 1 + (-0.658 - 1.47i)T + (-0.669 + 0.743i)T^{2} \)
53 \( 1 + (-0.363 + 0.5i)T + (-0.309 - 0.951i)T^{2} \)
59 \( 1 + (0.104 + 0.994i)T^{2} \)
61 \( 1 + (0.669 + 0.743i)T + (-0.104 + 0.994i)T^{2} \)
67 \( 1 + (-0.564 - 0.251i)T + (0.669 + 0.743i)T^{2} \)
71 \( 1 + (0.951 - 1.30i)T + (-0.309 - 0.951i)T^{2} \)
73 \( 1 + (-0.809 - 0.587i)T^{2} \)
79 \( 1 + (-1.47 + 0.658i)T + (0.669 - 0.743i)T^{2} \)
83 \( 1 + (0.614 - 0.0646i)T + (0.978 - 0.207i)T^{2} \)
89 \( 1 + (0.951 + 0.309i)T + (0.809 + 0.587i)T^{2} \)
97 \( 1 + (-0.913 + 0.406i)T + (0.669 - 0.743i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.309244999148642232511590786198, −8.640408559550704426187333559223, −7.916721242263277598640020760354, −7.45592589382914959748508356035, −6.35029170978153427157918742635, −5.70154971532837151137747251170, −4.47770103010308932400639739405, −3.67245820294498941245492625176, −2.92867718632348906129502072146, −1.08400043211464697062822940920, 0.816459609364607724552658043149, 2.17808236767767896473866573445, 3.29215037107903319855970567139, 4.12540859854794156419175221802, 5.17789684325368895422988463833, 6.09412751138016942186837549920, 7.15489814993628706706910706983, 7.37993170183307506425902439429, 8.639428462234207713911909929002, 9.310114014570906467371382051734

Graph of the $Z$-function along the critical line