Properties

Label 2-2040-5.4-c1-0-6
Degree $2$
Conductor $2040$
Sign $0.447 - 0.894i$
Analytic cond. $16.2894$
Root an. cond. $4.03602$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·3-s + (−2 − i)5-s − 2i·7-s − 9-s − 6·11-s − 2i·13-s + (1 − 2i)15-s + i·17-s + 2·21-s + 4i·23-s + (3 + 4i)25-s i·27-s + 8·31-s − 6i·33-s + (−2 + 4i)35-s + ⋯
L(s)  = 1  + 0.577i·3-s + (−0.894 − 0.447i)5-s − 0.755i·7-s − 0.333·9-s − 1.80·11-s − 0.554i·13-s + (0.258 − 0.516i)15-s + 0.242i·17-s + 0.436·21-s + 0.834i·23-s + (0.600 + 0.800i)25-s − 0.192i·27-s + 1.43·31-s − 1.04i·33-s + (−0.338 + 0.676i)35-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2040 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2040\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 17\)
Sign: $0.447 - 0.894i$
Analytic conductor: \(16.2894\)
Root analytic conductor: \(4.03602\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2040} (409, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2040,\ (\ :1/2),\ 0.447 - 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9089510069\)
\(L(\frac12)\) \(\approx\) \(0.9089510069\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - iT \)
5 \( 1 + (2 + i)T \)
17 \( 1 - iT \)
good7 \( 1 + 2iT - 7T^{2} \)
11 \( 1 + 6T + 11T^{2} \)
13 \( 1 + 2iT - 13T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 - 4iT - 23T^{2} \)
29 \( 1 + 29T^{2} \)
31 \( 1 - 8T + 31T^{2} \)
37 \( 1 - 10iT - 37T^{2} \)
41 \( 1 - 6T + 41T^{2} \)
43 \( 1 - 43T^{2} \)
47 \( 1 - 47T^{2} \)
53 \( 1 - 10iT - 53T^{2} \)
59 \( 1 - 2T + 59T^{2} \)
61 \( 1 - 10T + 61T^{2} \)
67 \( 1 + 4iT - 67T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 + 8iT - 73T^{2} \)
79 \( 1 + 8T + 79T^{2} \)
83 \( 1 + 4iT - 83T^{2} \)
89 \( 1 - 2T + 89T^{2} \)
97 \( 1 + 4iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.289561154883854979375807121057, −8.247169377666781407654251839431, −7.911433378652973613321711861174, −7.18398207753420309363629556555, −5.93697951462753148183368962019, −5.04271101581489130900285070541, −4.48415631837275459601018936001, −3.50902819497367371071837608382, −2.69665413170645044314226481025, −0.873241431082976301405158368076, 0.43175973370645989404736552094, 2.35354780256471794224224286057, 2.76625839346010426031716458555, 4.05562548422323838091386482555, 5.04505667660397636341883823770, 5.84511644137409164978919191189, 6.80558640104224134977295148963, 7.46180145379143892792371058079, 8.218653123071807660987326044218, 8.669146525120559742697353251849

Graph of the $Z$-function along the critical line