L(s) = 1 | + i·3-s + (−2 − i)5-s − 2i·7-s − 9-s − 6·11-s − 2i·13-s + (1 − 2i)15-s + i·17-s + 2·21-s + 4i·23-s + (3 + 4i)25-s − i·27-s + 8·31-s − 6i·33-s + (−2 + 4i)35-s + ⋯ |
L(s) = 1 | + 0.577i·3-s + (−0.894 − 0.447i)5-s − 0.755i·7-s − 0.333·9-s − 1.80·11-s − 0.554i·13-s + (0.258 − 0.516i)15-s + 0.242i·17-s + 0.436·21-s + 0.834i·23-s + (0.600 + 0.800i)25-s − 0.192i·27-s + 1.43·31-s − 1.04i·33-s + (−0.338 + 0.676i)35-s + ⋯ |
Λ(s)=(=(2040s/2ΓC(s)L(s)(0.447−0.894i)Λ(2−s)
Λ(s)=(=(2040s/2ΓC(s+1/2)L(s)(0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
2040
= 23⋅3⋅5⋅17
|
Sign: |
0.447−0.894i
|
Analytic conductor: |
16.2894 |
Root analytic conductor: |
4.03602 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2040(409,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2040, ( :1/2), 0.447−0.894i)
|
Particular Values
L(1) |
≈ |
0.9089510069 |
L(21) |
≈ |
0.9089510069 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−iT |
| 5 | 1+(2+i)T |
| 17 | 1−iT |
good | 7 | 1+2iT−7T2 |
| 11 | 1+6T+11T2 |
| 13 | 1+2iT−13T2 |
| 19 | 1+19T2 |
| 23 | 1−4iT−23T2 |
| 29 | 1+29T2 |
| 31 | 1−8T+31T2 |
| 37 | 1−10iT−37T2 |
| 41 | 1−6T+41T2 |
| 43 | 1−43T2 |
| 47 | 1−47T2 |
| 53 | 1−10iT−53T2 |
| 59 | 1−2T+59T2 |
| 61 | 1−10T+61T2 |
| 67 | 1+4iT−67T2 |
| 71 | 1+71T2 |
| 73 | 1+8iT−73T2 |
| 79 | 1+8T+79T2 |
| 83 | 1+4iT−83T2 |
| 89 | 1−2T+89T2 |
| 97 | 1+4iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.289561154883854979375807121057, −8.247169377666781407654251839431, −7.911433378652973613321711861174, −7.18398207753420309363629556555, −5.93697951462753148183368962019, −5.04271101581489130900285070541, −4.48415631837275459601018936001, −3.50902819497367371071837608382, −2.69665413170645044314226481025, −0.873241431082976301405158368076,
0.43175973370645989404736552094, 2.35354780256471794224224286057, 2.76625839346010426031716458555, 4.05562548422323838091386482555, 5.04505667660397636341883823770, 5.84511644137409164978919191189, 6.80558640104224134977295148963, 7.46180145379143892792371058079, 8.218653123071807660987326044218, 8.669146525120559742697353251849