Properties

Label 2-207-23.18-c3-0-2
Degree $2$
Conductor $207$
Sign $-0.988 - 0.149i$
Analytic cond. $12.2133$
Root an. cond. $3.49476$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2.49 + 0.733i)2-s + (−1.02 − 0.661i)4-s + (−2.23 + 15.5i)5-s + (−2.46 − 5.40i)7-s + (−15.7 − 18.1i)8-s + (−16.9 + 37.1i)10-s + (−20.9 + 6.16i)11-s + (−14.2 + 31.2i)13-s + (−2.20 − 15.3i)14-s + (−21.9 − 47.9i)16-s + (−108. + 69.9i)17-s + (−23.4 − 15.0i)19-s + (12.5 − 14.4i)20-s − 56.9·22-s + (18.9 − 108. i)23-s + ⋯
L(s)  = 1  + (0.883 + 0.259i)2-s + (−0.128 − 0.0826i)4-s + (−0.199 + 1.38i)5-s + (−0.133 − 0.292i)7-s + (−0.694 − 0.801i)8-s + (−0.536 + 1.17i)10-s + (−0.575 + 0.168i)11-s + (−0.304 + 0.666i)13-s + (−0.0420 − 0.292i)14-s + (−0.342 − 0.749i)16-s + (−1.55 + 0.998i)17-s + (−0.283 − 0.182i)19-s + (0.140 − 0.162i)20-s − 0.551·22-s + (0.171 − 0.985i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 207 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.988 - 0.149i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 207 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.988 - 0.149i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(207\)    =    \(3^{2} \cdot 23\)
Sign: $-0.988 - 0.149i$
Analytic conductor: \(12.2133\)
Root analytic conductor: \(3.49476\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{207} (64, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 207,\ (\ :3/2),\ -0.988 - 0.149i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.0615720 + 0.821770i\)
\(L(\frac12)\) \(\approx\) \(0.0615720 + 0.821770i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
23 \( 1 + (-18.9 + 108. i)T \)
good2 \( 1 + (-2.49 - 0.733i)T + (6.73 + 4.32i)T^{2} \)
5 \( 1 + (2.23 - 15.5i)T + (-119. - 35.2i)T^{2} \)
7 \( 1 + (2.46 + 5.40i)T + (-224. + 259. i)T^{2} \)
11 \( 1 + (20.9 - 6.16i)T + (1.11e3 - 719. i)T^{2} \)
13 \( 1 + (14.2 - 31.2i)T + (-1.43e3 - 1.66e3i)T^{2} \)
17 \( 1 + (108. - 69.9i)T + (2.04e3 - 4.46e3i)T^{2} \)
19 \( 1 + (23.4 + 15.0i)T + (2.84e3 + 6.23e3i)T^{2} \)
29 \( 1 + (10.5 - 6.78i)T + (1.01e4 - 2.21e4i)T^{2} \)
31 \( 1 + (10.3 + 11.9i)T + (-4.23e3 + 2.94e4i)T^{2} \)
37 \( 1 + (-33.6 - 233. i)T + (-4.86e4 + 1.42e4i)T^{2} \)
41 \( 1 + (53.6 - 373. i)T + (-6.61e4 - 1.94e4i)T^{2} \)
43 \( 1 + (310. - 358. i)T + (-1.13e4 - 7.86e4i)T^{2} \)
47 \( 1 - 547.T + 1.03e5T^{2} \)
53 \( 1 + (192. + 421. i)T + (-9.74e4 + 1.12e5i)T^{2} \)
59 \( 1 + (-248. + 543. i)T + (-1.34e5 - 1.55e5i)T^{2} \)
61 \( 1 + (181. + 209. i)T + (-3.23e4 + 2.24e5i)T^{2} \)
67 \( 1 + (-164. - 48.3i)T + (2.53e5 + 1.62e5i)T^{2} \)
71 \( 1 + (-218. - 64.1i)T + (3.01e5 + 1.93e5i)T^{2} \)
73 \( 1 + (-784. - 504. i)T + (1.61e5 + 3.53e5i)T^{2} \)
79 \( 1 + (-97.3 + 213. i)T + (-3.22e5 - 3.72e5i)T^{2} \)
83 \( 1 + (-129. - 903. i)T + (-5.48e5 + 1.61e5i)T^{2} \)
89 \( 1 + (451. - 521. i)T + (-1.00e5 - 6.97e5i)T^{2} \)
97 \( 1 + (12.2 - 85.2i)T + (-8.75e5 - 2.57e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.71713458920080476710001066485, −11.39860422278458931688431433820, −10.58744048424511356363997795839, −9.657331375908098560902809235271, −8.280417143679537144760377566495, −6.69726803013860492445389621688, −6.53262959737475683866637148690, −4.84537531999829774691936748141, −3.84809716850029927674407023423, −2.53794509178180519312825509427, 0.24876697491820260084112867141, 2.46040118549546780864426915248, 3.97395222068252113825920835607, 5.00175497317268908813227067293, 5.65536569645910766338529738068, 7.48846055401008778057780717361, 8.730233329368495036676706803319, 9.158110181811802652505204463436, 10.77022067994987800065064568923, 11.93518885766461141540741579151

Graph of the $Z$-function along the critical line