Properties

Label 2-2070-69.68-c1-0-18
Degree $2$
Conductor $2070$
Sign $-0.619 + 0.785i$
Analytic cond. $16.5290$
Root an. cond. $4.06559$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s − 4-s − 5-s + 2.68i·7-s + i·8-s + i·10-s − 1.73·11-s − 2.55·13-s + 2.68·14-s + 16-s − 1.27·17-s + 1.40i·19-s + 20-s + 1.73i·22-s + (4.59 − 1.35i)23-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.5·4-s − 0.447·5-s + 1.01i·7-s + 0.353i·8-s + 0.316i·10-s − 0.521·11-s − 0.708·13-s + 0.718·14-s + 0.250·16-s − 0.308·17-s + 0.322i·19-s + 0.223·20-s + 0.369i·22-s + (0.958 − 0.283i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2070 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.619 + 0.785i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2070 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.619 + 0.785i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2070\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 23\)
Sign: $-0.619 + 0.785i$
Analytic conductor: \(16.5290\)
Root analytic conductor: \(4.06559\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2070} (1241, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2070,\ (\ :1/2),\ -0.619 + 0.785i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8243884591\)
\(L(\frac12)\) \(\approx\) \(0.8243884591\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + iT \)
3 \( 1 \)
5 \( 1 + T \)
23 \( 1 + (-4.59 + 1.35i)T \)
good7 \( 1 - 2.68iT - 7T^{2} \)
11 \( 1 + 1.73T + 11T^{2} \)
13 \( 1 + 2.55T + 13T^{2} \)
17 \( 1 + 1.27T + 17T^{2} \)
19 \( 1 - 1.40iT - 19T^{2} \)
29 \( 1 + 9.62iT - 29T^{2} \)
31 \( 1 + 1.47T + 31T^{2} \)
37 \( 1 + 4.20iT - 37T^{2} \)
41 \( 1 + 3.40iT - 41T^{2} \)
43 \( 1 - 2.35iT - 43T^{2} \)
47 \( 1 + 3.21iT - 47T^{2} \)
53 \( 1 - 1.80T + 53T^{2} \)
59 \( 1 + 7.74iT - 59T^{2} \)
61 \( 1 + 6.78iT - 61T^{2} \)
67 \( 1 + 7.71iT - 67T^{2} \)
71 \( 1 + 4.44iT - 71T^{2} \)
73 \( 1 + 1.36T + 73T^{2} \)
79 \( 1 - 10.0iT - 79T^{2} \)
83 \( 1 - 8.67T + 83T^{2} \)
89 \( 1 - 3.72T + 89T^{2} \)
97 \( 1 + 7.03iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.970460618975119731050282582210, −8.171800645661346691863371833430, −7.49917659552998032091651841237, −6.40250277794341887783079884433, −5.44587165138197125862276279951, −4.77390078899928159523150145495, −3.78063091105328628228840353722, −2.72993466009666545716081346572, −2.06521002000647397402969216571, −0.33500430293841913534665684759, 1.08865995719968532047082567625, 2.80407973642384884818908420701, 3.78747899586088298592979379198, 4.71747431346302441527536917356, 5.26671455295819119314011740618, 6.47569229936701237070878237267, 7.28671094252363425621484348700, 7.49897909369108070677518572086, 8.574587864806215716728625658367, 9.182864228226533680850596854746

Graph of the $Z$-function along the critical line