L(s) = 1 | − i·2-s − 4-s − 5-s + 2.68i·7-s + i·8-s + i·10-s − 1.73·11-s − 2.55·13-s + 2.68·14-s + 16-s − 1.27·17-s + 1.40i·19-s + 20-s + 1.73i·22-s + (4.59 − 1.35i)23-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.5·4-s − 0.447·5-s + 1.01i·7-s + 0.353i·8-s + 0.316i·10-s − 0.521·11-s − 0.708·13-s + 0.718·14-s + 0.250·16-s − 0.308·17-s + 0.322i·19-s + 0.223·20-s + 0.369i·22-s + (0.958 − 0.283i)23-s + ⋯ |
Λ(s)=(=(2070s/2ΓC(s)L(s)(−0.619+0.785i)Λ(2−s)
Λ(s)=(=(2070s/2ΓC(s+1/2)L(s)(−0.619+0.785i)Λ(1−s)
Degree: |
2 |
Conductor: |
2070
= 2⋅32⋅5⋅23
|
Sign: |
−0.619+0.785i
|
Analytic conductor: |
16.5290 |
Root analytic conductor: |
4.06559 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2070(1241,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2070, ( :1/2), −0.619+0.785i)
|
Particular Values
L(1) |
≈ |
0.8243884591 |
L(21) |
≈ |
0.8243884591 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+iT |
| 3 | 1 |
| 5 | 1+T |
| 23 | 1+(−4.59+1.35i)T |
good | 7 | 1−2.68iT−7T2 |
| 11 | 1+1.73T+11T2 |
| 13 | 1+2.55T+13T2 |
| 17 | 1+1.27T+17T2 |
| 19 | 1−1.40iT−19T2 |
| 29 | 1+9.62iT−29T2 |
| 31 | 1+1.47T+31T2 |
| 37 | 1+4.20iT−37T2 |
| 41 | 1+3.40iT−41T2 |
| 43 | 1−2.35iT−43T2 |
| 47 | 1+3.21iT−47T2 |
| 53 | 1−1.80T+53T2 |
| 59 | 1+7.74iT−59T2 |
| 61 | 1+6.78iT−61T2 |
| 67 | 1+7.71iT−67T2 |
| 71 | 1+4.44iT−71T2 |
| 73 | 1+1.36T+73T2 |
| 79 | 1−10.0iT−79T2 |
| 83 | 1−8.67T+83T2 |
| 89 | 1−3.72T+89T2 |
| 97 | 1+7.03iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.970460618975119731050282582210, −8.171800645661346691863371833430, −7.49917659552998032091651841237, −6.40250277794341887783079884433, −5.44587165138197125862276279951, −4.77390078899928159523150145495, −3.78063091105328628228840353722, −2.72993466009666545716081346572, −2.06521002000647397402969216571, −0.33500430293841913534665684759,
1.08865995719968532047082567625, 2.80407973642384884818908420701, 3.78747899586088298592979379198, 4.71747431346302441527536917356, 5.26671455295819119314011740618, 6.47569229936701237070878237267, 7.28671094252363425621484348700, 7.49897909369108070677518572086, 8.574587864806215716728625658367, 9.182864228226533680850596854746