L(s) = 1 | + 204.·3-s − 258.·5-s + 8.86e3·7-s + 2.21e4·9-s − 3.60e4·11-s − 2.85e4·13-s − 5.29e4·15-s + 3.27e5·17-s − 2.65e5·19-s + 1.81e6·21-s + 2.42e6·23-s − 1.88e6·25-s + 5.09e5·27-s + 3.99e6·29-s + 6.45e6·31-s − 7.38e6·33-s − 2.29e6·35-s − 8.15e6·37-s − 5.84e6·39-s − 7.20e5·41-s + 4.13e7·43-s − 5.74e6·45-s − 3.67e7·47-s + 3.81e7·49-s + 6.69e7·51-s + 1.67e7·53-s + 9.34e6·55-s + ⋯ |
L(s) = 1 | + 1.45·3-s − 0.185·5-s + 1.39·7-s + 1.12·9-s − 0.743·11-s − 0.277·13-s − 0.270·15-s + 0.950·17-s − 0.467·19-s + 2.03·21-s + 1.80·23-s − 0.965·25-s + 0.184·27-s + 1.04·29-s + 1.25·31-s − 1.08·33-s − 0.258·35-s − 0.715·37-s − 0.404·39-s − 0.0398·41-s + 1.84·43-s − 0.208·45-s − 1.09·47-s + 0.946·49-s + 1.38·51-s + 0.291·53-s + 0.137·55-s + ⋯ |
Λ(s)=(=(208s/2ΓC(s)L(s)Λ(10−s)
Λ(s)=(=(208s/2ΓC(s+9/2)L(s)Λ(1−s)
Particular Values
L(5) |
≈ |
4.659187376 |
L(21) |
≈ |
4.659187376 |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+2.85e4T |
good | 3 | 1−204.T+1.96e4T2 |
| 5 | 1+258.T+1.95e6T2 |
| 7 | 1−8.86e3T+4.03e7T2 |
| 11 | 1+3.60e4T+2.35e9T2 |
| 17 | 1−3.27e5T+1.18e11T2 |
| 19 | 1+2.65e5T+3.22e11T2 |
| 23 | 1−2.42e6T+1.80e12T2 |
| 29 | 1−3.99e6T+1.45e13T2 |
| 31 | 1−6.45e6T+2.64e13T2 |
| 37 | 1+8.15e6T+1.29e14T2 |
| 41 | 1+7.20e5T+3.27e14T2 |
| 43 | 1−4.13e7T+5.02e14T2 |
| 47 | 1+3.67e7T+1.11e15T2 |
| 53 | 1−1.67e7T+3.29e15T2 |
| 59 | 1−5.89e7T+8.66e15T2 |
| 61 | 1−1.28e8T+1.16e16T2 |
| 67 | 1−1.91e8T+2.72e16T2 |
| 71 | 1+3.40e8T+4.58e16T2 |
| 73 | 1−3.19e8T+5.88e16T2 |
| 79 | 1+2.44e8T+1.19e17T2 |
| 83 | 1−4.38e8T+1.86e17T2 |
| 89 | 1+7.90e8T+3.50e17T2 |
| 97 | 1+1.65e8T+7.60e17T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.64334664654949697392773588705, −9.619079419077083341211188302115, −8.434423998729304566430308474066, −8.070923609894968178564335892853, −7.13966175791632708156159976087, −5.33578797336076853350160111911, −4.34635727119769224519790553274, −3.06655046904912396420465479271, −2.19274826127070095583355114948, −1.01077646326770093102294153631,
1.01077646326770093102294153631, 2.19274826127070095583355114948, 3.06655046904912396420465479271, 4.34635727119769224519790553274, 5.33578797336076853350160111911, 7.13966175791632708156159976087, 8.070923609894968178564335892853, 8.434423998729304566430308474066, 9.619079419077083341211188302115, 10.64334664654949697392773588705