Properties

Label 2-208-1.1-c9-0-27
Degree $2$
Conductor $208$
Sign $1$
Analytic cond. $107.127$
Root an. cond. $10.3502$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 204.·3-s − 258.·5-s + 8.86e3·7-s + 2.21e4·9-s − 3.60e4·11-s − 2.85e4·13-s − 5.29e4·15-s + 3.27e5·17-s − 2.65e5·19-s + 1.81e6·21-s + 2.42e6·23-s − 1.88e6·25-s + 5.09e5·27-s + 3.99e6·29-s + 6.45e6·31-s − 7.38e6·33-s − 2.29e6·35-s − 8.15e6·37-s − 5.84e6·39-s − 7.20e5·41-s + 4.13e7·43-s − 5.74e6·45-s − 3.67e7·47-s + 3.81e7·49-s + 6.69e7·51-s + 1.67e7·53-s + 9.34e6·55-s + ⋯
L(s)  = 1  + 1.45·3-s − 0.185·5-s + 1.39·7-s + 1.12·9-s − 0.743·11-s − 0.277·13-s − 0.270·15-s + 0.950·17-s − 0.467·19-s + 2.03·21-s + 1.80·23-s − 0.965·25-s + 0.184·27-s + 1.04·29-s + 1.25·31-s − 1.08·33-s − 0.258·35-s − 0.715·37-s − 0.404·39-s − 0.0398·41-s + 1.84·43-s − 0.208·45-s − 1.09·47-s + 0.946·49-s + 1.38·51-s + 0.291·53-s + 0.137·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(208\)    =    \(2^{4} \cdot 13\)
Sign: $1$
Analytic conductor: \(107.127\)
Root analytic conductor: \(10.3502\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 208,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(4.659187376\)
\(L(\frac12)\) \(\approx\) \(4.659187376\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 + 2.85e4T \)
good3 \( 1 - 204.T + 1.96e4T^{2} \)
5 \( 1 + 258.T + 1.95e6T^{2} \)
7 \( 1 - 8.86e3T + 4.03e7T^{2} \)
11 \( 1 + 3.60e4T + 2.35e9T^{2} \)
17 \( 1 - 3.27e5T + 1.18e11T^{2} \)
19 \( 1 + 2.65e5T + 3.22e11T^{2} \)
23 \( 1 - 2.42e6T + 1.80e12T^{2} \)
29 \( 1 - 3.99e6T + 1.45e13T^{2} \)
31 \( 1 - 6.45e6T + 2.64e13T^{2} \)
37 \( 1 + 8.15e6T + 1.29e14T^{2} \)
41 \( 1 + 7.20e5T + 3.27e14T^{2} \)
43 \( 1 - 4.13e7T + 5.02e14T^{2} \)
47 \( 1 + 3.67e7T + 1.11e15T^{2} \)
53 \( 1 - 1.67e7T + 3.29e15T^{2} \)
59 \( 1 - 5.89e7T + 8.66e15T^{2} \)
61 \( 1 - 1.28e8T + 1.16e16T^{2} \)
67 \( 1 - 1.91e8T + 2.72e16T^{2} \)
71 \( 1 + 3.40e8T + 4.58e16T^{2} \)
73 \( 1 - 3.19e8T + 5.88e16T^{2} \)
79 \( 1 + 2.44e8T + 1.19e17T^{2} \)
83 \( 1 - 4.38e8T + 1.86e17T^{2} \)
89 \( 1 + 7.90e8T + 3.50e17T^{2} \)
97 \( 1 + 1.65e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.64334664654949697392773588705, −9.619079419077083341211188302115, −8.434423998729304566430308474066, −8.070923609894968178564335892853, −7.13966175791632708156159976087, −5.33578797336076853350160111911, −4.34635727119769224519790553274, −3.06655046904912396420465479271, −2.19274826127070095583355114948, −1.01077646326770093102294153631, 1.01077646326770093102294153631, 2.19274826127070095583355114948, 3.06655046904912396420465479271, 4.34635727119769224519790553274, 5.33578797336076853350160111911, 7.13966175791632708156159976087, 8.070923609894968178564335892853, 8.434423998729304566430308474066, 9.619079419077083341211188302115, 10.64334664654949697392773588705

Graph of the $Z$-function along the critical line