Properties

Label 2-208-1.1-c5-0-1
Degree $2$
Conductor $208$
Sign $1$
Analytic cond. $33.3598$
Root an. cond. $5.77579$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.63·3-s − 103.·5-s − 126.·7-s − 240.·9-s + 14.8·11-s − 169·13-s − 168.·15-s − 1.05e3·17-s + 213.·19-s − 205.·21-s + 4.23e3·23-s + 7.57e3·25-s − 788.·27-s − 504.·29-s − 4.78e3·31-s + 24.1·33-s + 1.30e4·35-s − 4.63e3·37-s − 275.·39-s + 7.94e3·41-s + 8.51e3·43-s + 2.48e4·45-s − 2.49e4·47-s − 853.·49-s − 1.71e3·51-s − 7.80e3·53-s − 1.53e3·55-s + ⋯
L(s)  = 1  + 0.104·3-s − 1.85·5-s − 0.974·7-s − 0.989·9-s + 0.0369·11-s − 0.277·13-s − 0.193·15-s − 0.882·17-s + 0.135·19-s − 0.101·21-s + 1.66·23-s + 2.42·25-s − 0.208·27-s − 0.111·29-s − 0.894·31-s + 0.00386·33-s + 1.80·35-s − 0.556·37-s − 0.0290·39-s + 0.738·41-s + 0.702·43-s + 1.83·45-s − 1.64·47-s − 0.0507·49-s − 0.0922·51-s − 0.381·53-s − 0.0683·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(208\)    =    \(2^{4} \cdot 13\)
Sign: $1$
Analytic conductor: \(33.3598\)
Root analytic conductor: \(5.77579\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 208,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.5556607390\)
\(L(\frac12)\) \(\approx\) \(0.5556607390\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 + 169T \)
good3 \( 1 - 1.63T + 243T^{2} \)
5 \( 1 + 103.T + 3.12e3T^{2} \)
7 \( 1 + 126.T + 1.68e4T^{2} \)
11 \( 1 - 14.8T + 1.61e5T^{2} \)
17 \( 1 + 1.05e3T + 1.41e6T^{2} \)
19 \( 1 - 213.T + 2.47e6T^{2} \)
23 \( 1 - 4.23e3T + 6.43e6T^{2} \)
29 \( 1 + 504.T + 2.05e7T^{2} \)
31 \( 1 + 4.78e3T + 2.86e7T^{2} \)
37 \( 1 + 4.63e3T + 6.93e7T^{2} \)
41 \( 1 - 7.94e3T + 1.15e8T^{2} \)
43 \( 1 - 8.51e3T + 1.47e8T^{2} \)
47 \( 1 + 2.49e4T + 2.29e8T^{2} \)
53 \( 1 + 7.80e3T + 4.18e8T^{2} \)
59 \( 1 - 3.73e4T + 7.14e8T^{2} \)
61 \( 1 + 1.81e4T + 8.44e8T^{2} \)
67 \( 1 - 3.45e4T + 1.35e9T^{2} \)
71 \( 1 + 4.12e4T + 1.80e9T^{2} \)
73 \( 1 + 1.05e3T + 2.07e9T^{2} \)
79 \( 1 - 4.77e4T + 3.07e9T^{2} \)
83 \( 1 - 7.47e4T + 3.93e9T^{2} \)
89 \( 1 - 9.79e3T + 5.58e9T^{2} \)
97 \( 1 + 1.38e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.42140606013786985413529709032, −10.89558970998362808531906178219, −9.300968487459699849855024358234, −8.523779788229503109535625763936, −7.46741565380537667722074103615, −6.58916227270048670680314101878, −5.00384575315173881342273615683, −3.72146973553275412004267618649, −2.89049446749721542180731648716, −0.42857091083671642489615526226, 0.42857091083671642489615526226, 2.89049446749721542180731648716, 3.72146973553275412004267618649, 5.00384575315173881342273615683, 6.58916227270048670680314101878, 7.46741565380537667722074103615, 8.523779788229503109535625763936, 9.300968487459699849855024358234, 10.89558970998362808531906178219, 11.42140606013786985413529709032

Graph of the $Z$-function along the critical line