Properties

Label 2-2080-1.1-c1-0-13
Degree $2$
Conductor $2080$
Sign $1$
Analytic cond. $16.6088$
Root an. cond. $4.07539$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.41·3-s − 5-s − 0.999·9-s + 1.41·11-s + 13-s − 1.41·15-s − 2·17-s − 1.41·19-s + 7.07·23-s + 25-s − 5.65·27-s + 8·29-s + 9.89·31-s + 2.00·33-s + 4·37-s + 1.41·39-s + 6·41-s + 1.41·43-s + 0.999·45-s − 7·49-s − 2.82·51-s + 6·53-s − 1.41·55-s − 2.00·57-s − 4.24·59-s + 4·61-s − 65-s + ⋯
L(s)  = 1  + 0.816·3-s − 0.447·5-s − 0.333·9-s + 0.426·11-s + 0.277·13-s − 0.365·15-s − 0.485·17-s − 0.324·19-s + 1.47·23-s + 0.200·25-s − 1.08·27-s + 1.48·29-s + 1.77·31-s + 0.348·33-s + 0.657·37-s + 0.226·39-s + 0.937·41-s + 0.215·43-s + 0.149·45-s − 49-s − 0.396·51-s + 0.824·53-s − 0.190·55-s − 0.264·57-s − 0.552·59-s + 0.512·61-s − 0.124·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2080\)    =    \(2^{5} \cdot 5 \cdot 13\)
Sign: $1$
Analytic conductor: \(16.6088\)
Root analytic conductor: \(4.07539\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2080,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.167120601\)
\(L(\frac12)\) \(\approx\) \(2.167120601\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
13 \( 1 - T \)
good3 \( 1 - 1.41T + 3T^{2} \)
7 \( 1 + 7T^{2} \)
11 \( 1 - 1.41T + 11T^{2} \)
17 \( 1 + 2T + 17T^{2} \)
19 \( 1 + 1.41T + 19T^{2} \)
23 \( 1 - 7.07T + 23T^{2} \)
29 \( 1 - 8T + 29T^{2} \)
31 \( 1 - 9.89T + 31T^{2} \)
37 \( 1 - 4T + 37T^{2} \)
41 \( 1 - 6T + 41T^{2} \)
43 \( 1 - 1.41T + 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 - 6T + 53T^{2} \)
59 \( 1 + 4.24T + 59T^{2} \)
61 \( 1 - 4T + 61T^{2} \)
67 \( 1 - 14.1T + 67T^{2} \)
71 \( 1 + 15.5T + 71T^{2} \)
73 \( 1 - 4T + 73T^{2} \)
79 \( 1 + 2.82T + 79T^{2} \)
83 \( 1 + 5.65T + 83T^{2} \)
89 \( 1 - 14T + 89T^{2} \)
97 \( 1 + 2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.898032394061960257620666360562, −8.456690946247999466342992528880, −7.75158284399719743795664268979, −6.79098212257702470924986475172, −6.13011603626239084509450323436, −4.90130892366939920906866174764, −4.15264857376176038887777634895, −3.13337481145512069473941726136, −2.48021950040149067650063118398, −0.962110253747872861061071414904, 0.962110253747872861061071414904, 2.48021950040149067650063118398, 3.13337481145512069473941726136, 4.15264857376176038887777634895, 4.90130892366939920906866174764, 6.13011603626239084509450323436, 6.79098212257702470924986475172, 7.75158284399719743795664268979, 8.456690946247999466342992528880, 8.898032394061960257620666360562

Graph of the $Z$-function along the critical line