Properties

Label 2-209-1.1-c1-0-14
Degree $2$
Conductor $209$
Sign $-1$
Analytic cond. $1.66887$
Root an. cond. $1.29184$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·4-s − 3·5-s − 4·7-s − 2·9-s + 11-s − 2·12-s + 2·13-s − 3·15-s + 4·16-s + 19-s + 6·20-s − 4·21-s + 3·23-s + 4·25-s − 5·27-s + 8·28-s − 6·29-s − 7·31-s + 33-s + 12·35-s + 4·36-s − 7·37-s + 2·39-s − 10·43-s − 2·44-s + 6·45-s + ⋯
L(s)  = 1  + 0.577·3-s − 4-s − 1.34·5-s − 1.51·7-s − 2/3·9-s + 0.301·11-s − 0.577·12-s + 0.554·13-s − 0.774·15-s + 16-s + 0.229·19-s + 1.34·20-s − 0.872·21-s + 0.625·23-s + 4/5·25-s − 0.962·27-s + 1.51·28-s − 1.11·29-s − 1.25·31-s + 0.174·33-s + 2.02·35-s + 2/3·36-s − 1.15·37-s + 0.320·39-s − 1.52·43-s − 0.301·44-s + 0.894·45-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 209 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 209 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(209\)    =    \(11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(1.66887\)
Root analytic conductor: \(1.29184\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 209,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 - T \)
19 \( 1 - T \)
good2 \( 1 + p T^{2} \)
3 \( 1 - T + p T^{2} \)
5 \( 1 + 3 T + p T^{2} \)
7 \( 1 + 4 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + p T^{2} \)
23 \( 1 - 3 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + 7 T + p T^{2} \)
37 \( 1 + 7 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 + 10 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 - 3 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 - 11 T + p T^{2} \)
71 \( 1 - 15 T + p T^{2} \)
73 \( 1 - 8 T + p T^{2} \)
79 \( 1 + 16 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 - 9 T + p T^{2} \)
97 \( 1 + T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.05917203220889978964010728308, −10.96102192801302376001650382810, −9.603034074754024658706636273886, −8.916975147724513941001822680471, −8.090908771111864109123836483338, −6.92292199886679346603140457685, −5.46804944393504386563865646601, −3.77762904601741073110269049747, −3.37641666123212985170587332393, 0, 3.37641666123212985170587332393, 3.77762904601741073110269049747, 5.46804944393504386563865646601, 6.92292199886679346603140457685, 8.090908771111864109123836483338, 8.916975147724513941001822680471, 9.603034074754024658706636273886, 10.96102192801302376001650382810, 12.05917203220889978964010728308

Graph of the $Z$-function along the critical line