Properties

Label 2-209-1.1-c1-0-6
Degree $2$
Conductor $209$
Sign $1$
Analytic cond. $1.66887$
Root an. cond. $1.29184$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.55·2-s − 2.99·3-s + 4.52·4-s + 0.244·5-s − 7.65·6-s + 4.42·7-s + 6.44·8-s + 5.98·9-s + 0.625·10-s − 11-s − 13.5·12-s − 5.89·13-s + 11.2·14-s − 0.734·15-s + 7.41·16-s − 2.93·17-s + 15.2·18-s + 19-s + 1.10·20-s − 13.2·21-s − 2.55·22-s − 0.372·23-s − 19.3·24-s − 4.94·25-s − 15.0·26-s − 8.96·27-s + 20.0·28-s + ⋯
L(s)  = 1  + 1.80·2-s − 1.73·3-s + 2.26·4-s + 0.109·5-s − 3.12·6-s + 1.67·7-s + 2.27·8-s + 1.99·9-s + 0.197·10-s − 0.301·11-s − 3.91·12-s − 1.63·13-s + 3.01·14-s − 0.189·15-s + 1.85·16-s − 0.712·17-s + 3.60·18-s + 0.229·19-s + 0.247·20-s − 2.89·21-s − 0.544·22-s − 0.0777·23-s − 3.94·24-s − 0.988·25-s − 2.95·26-s − 1.72·27-s + 3.78·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 209 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 209 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(209\)    =    \(11 \cdot 19\)
Sign: $1$
Analytic conductor: \(1.66887\)
Root analytic conductor: \(1.29184\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 209,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.169824296\)
\(L(\frac12)\) \(\approx\) \(2.169824296\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 + T \)
19 \( 1 - T \)
good2 \( 1 - 2.55T + 2T^{2} \)
3 \( 1 + 2.99T + 3T^{2} \)
5 \( 1 - 0.244T + 5T^{2} \)
7 \( 1 - 4.42T + 7T^{2} \)
13 \( 1 + 5.89T + 13T^{2} \)
17 \( 1 + 2.93T + 17T^{2} \)
23 \( 1 + 0.372T + 23T^{2} \)
29 \( 1 + 3.47T + 29T^{2} \)
31 \( 1 - 6.37T + 31T^{2} \)
37 \( 1 - 0.926T + 37T^{2} \)
41 \( 1 + 6.67T + 41T^{2} \)
43 \( 1 - 2.12T + 43T^{2} \)
47 \( 1 + 1.72T + 47T^{2} \)
53 \( 1 + 1.44T + 53T^{2} \)
59 \( 1 - 7.71T + 59T^{2} \)
61 \( 1 - 4.16T + 61T^{2} \)
67 \( 1 + 11.3T + 67T^{2} \)
71 \( 1 - 2.40T + 71T^{2} \)
73 \( 1 - 14.4T + 73T^{2} \)
79 \( 1 - 1.67T + 79T^{2} \)
83 \( 1 + 6.47T + 83T^{2} \)
89 \( 1 + 4.95T + 89T^{2} \)
97 \( 1 - 8.24T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.16374944357878071848301360135, −11.68839088475414473733057959434, −11.09103623651554728233725284728, −10.11325149907049710592478905561, −7.72658915817545839439684493353, −6.80248782016642489332906260128, −5.62973329720563020305381508200, −4.97883523731470481734744245001, −4.38511610735756297537590625805, −2.06675571676242139840767917581, 2.06675571676242139840767917581, 4.38511610735756297537590625805, 4.97883523731470481734744245001, 5.62973329720563020305381508200, 6.80248782016642489332906260128, 7.72658915817545839439684493353, 10.11325149907049710592478905561, 11.09103623651554728233725284728, 11.68839088475414473733057959434, 12.16374944357878071848301360135

Graph of the $Z$-function along the critical line