L(s) = 1 | + (1.73 − 1.00i)2-s + (34.6 − 31.4i)3-s + (−61.9 + 107. i)4-s + (181. + 313. i)5-s + (28.5 − 89.1i)6-s + (799. − 429. i)7-s + 504. i·8-s + (208. − 2.17e3i)9-s + (628. + 362. i)10-s + (4.79e3 + 2.76e3i)11-s + (1.23e3 + 5.66e3i)12-s + 1.89e3i·13-s + (954. − 1.54e3i)14-s + (1.61e4 + 5.16e3i)15-s + (−7.43e3 − 1.28e4i)16-s + (4.42e3 − 7.67e3i)17-s + ⋯ |
L(s) = 1 | + (0.153 − 0.0884i)2-s + (0.740 − 0.672i)3-s + (−0.484 + 0.838i)4-s + (0.648 + 1.12i)5-s + (0.0538 − 0.168i)6-s + (0.880 − 0.473i)7-s + 0.348i·8-s + (0.0955 − 0.995i)9-s + (0.198 + 0.114i)10-s + (1.08 + 0.627i)11-s + (0.205 + 0.946i)12-s + 0.239i·13-s + (0.0930 − 0.150i)14-s + (1.23 + 0.395i)15-s + (−0.453 − 0.785i)16-s + (0.218 − 0.378i)17-s + ⋯ |
Λ(s)=(=(21s/2ΓC(s)L(s)(0.952−0.305i)Λ(8−s)
Λ(s)=(=(21s/2ΓC(s+7/2)L(s)(0.952−0.305i)Λ(1−s)
Degree: |
2 |
Conductor: |
21
= 3⋅7
|
Sign: |
0.952−0.305i
|
Analytic conductor: |
6.56008 |
Root analytic conductor: |
2.56126 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ21(17,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 21, ( :7/2), 0.952−0.305i)
|
Particular Values
L(4) |
≈ |
2.28741+0.357978i |
L(21) |
≈ |
2.28741+0.357978i |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−34.6+31.4i)T |
| 7 | 1+(−799.+429.i)T |
good | 2 | 1+(−1.73+1.00i)T+(64−110.i)T2 |
| 5 | 1+(−181.−313.i)T+(−3.90e4+6.76e4i)T2 |
| 11 | 1+(−4.79e3−2.76e3i)T+(9.74e6+1.68e7i)T2 |
| 13 | 1−1.89e3iT−6.27e7T2 |
| 17 | 1+(−4.42e3+7.67e3i)T+(−2.05e8−3.55e8i)T2 |
| 19 | 1+(3.21e4−1.85e4i)T+(4.46e8−7.74e8i)T2 |
| 23 | 1+(8.32e3−4.80e3i)T+(1.70e9−2.94e9i)T2 |
| 29 | 1+7.72e4iT−1.72e10T2 |
| 31 | 1+(2.10e5+1.21e5i)T+(1.37e10+2.38e10i)T2 |
| 37 | 1+(−6.65e4−1.15e5i)T+(−4.74e10+8.22e10i)T2 |
| 41 | 1−7.04e5T+1.94e11T2 |
| 43 | 1+4.60e5T+2.71e11T2 |
| 47 | 1+(3.77e4+6.53e4i)T+(−2.53e11+4.38e11i)T2 |
| 53 | 1+(1.76e6+1.02e6i)T+(5.87e11+1.01e12i)T2 |
| 59 | 1+(−1.23e6+2.13e6i)T+(−1.24e12−2.15e12i)T2 |
| 61 | 1+(−1.09e6+6.34e5i)T+(1.57e12−2.72e12i)T2 |
| 67 | 1+(−1.15e6+1.99e6i)T+(−3.03e12−5.24e12i)T2 |
| 71 | 1−5.32e6iT−9.09e12T2 |
| 73 | 1+(2.78e6+1.61e6i)T+(5.52e12+9.56e12i)T2 |
| 79 | 1+(−2.74e6−4.74e6i)T+(−9.60e12+1.66e13i)T2 |
| 83 | 1+4.19e6T+2.71e13T2 |
| 89 | 1+(−9.21e5−1.59e6i)T+(−2.21e13+3.83e13i)T2 |
| 97 | 1−3.07e6iT−8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−17.11535362682605844241155912692, −14.56302828391873264118124484177, −14.25087654199518449952235086092, −12.89699431381013646457066173049, −11.47424787051702363551143741442, −9.558008983553131783744016451665, −7.987658655189919221130350584618, −6.75142869870750698727955080798, −3.90618083121950635873690642848, −2.08912429366545354768969684978,
1.52867784632677600057185926116, 4.42560222249440108189528197549, 5.63259887280075204306745959964, 8.653952011469703455873751211444, 9.231576737989266030012910260334, 10.82704691225306826760130902408, 12.91511367557889183725310363573, 14.17346504948843780032628230195, 14.90717199682183573508940537304, 16.38534250650980298408356115377