L(s) = 1 | − 2·2-s + 3·4-s + 2·5-s + 2·7-s − 4·8-s − 4·10-s − 8·11-s − 2·13-s − 4·14-s + 5·16-s + 6·20-s + 16·22-s + 2·23-s − 4·25-s + 4·26-s + 6·28-s − 16·29-s + 8·31-s − 6·32-s + 4·35-s − 12·37-s − 8·40-s − 6·41-s − 4·43-s − 24·44-s − 4·46-s − 8·47-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 3/2·4-s + 0.894·5-s + 0.755·7-s − 1.41·8-s − 1.26·10-s − 2.41·11-s − 0.554·13-s − 1.06·14-s + 5/4·16-s + 1.34·20-s + 3.41·22-s + 0.417·23-s − 4/5·25-s + 0.784·26-s + 1.13·28-s − 2.97·29-s + 1.43·31-s − 1.06·32-s + 0.676·35-s − 1.97·37-s − 1.26·40-s − 0.937·41-s − 0.609·43-s − 3.61·44-s − 0.589·46-s − 1.16·47-s + ⋯ |
Λ(s)=(=(4435236s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(4435236s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
4435236
= 22⋅38⋅132
|
Sign: |
1
|
Analytic conductor: |
282.794 |
Root analytic conductor: |
4.10079 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 4435236, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1+T)2 |
| 3 | | 1 |
| 13 | C1 | (1+T)2 |
good | 5 | D4 | 1−2T+8T2−2pT3+p2T4 |
| 7 | D4 | 1−2T+3T2−2pT3+p2T4 |
| 11 | D4 | 1+8T+35T2+8pT3+p2T4 |
| 17 | C22 | 1−14T2+p2T4 |
| 19 | C22 | 1+35T2+p2T4 |
| 23 | D4 | 1−2T+20T2−2pT3+p2T4 |
| 29 | D4 | 1+16T+119T2+16pT3+p2T4 |
| 31 | D4 | 1−8T+66T2−8pT3+p2T4 |
| 37 | D4 | 1+12T+98T2+12pT3+p2T4 |
| 41 | D4 | 1+6T+88T2+6pT3+p2T4 |
| 43 | D4 | 1+4T+42T2+4pT3+p2T4 |
| 47 | D4 | 1+8T+98T2+8pT3+p2T4 |
| 53 | C22 | 1+31T2+p2T4 |
| 59 | D4 | 1+4T−25T2+4pT3+p2T4 |
| 61 | D4 | 1+4T+99T2+4pT3+p2T4 |
| 67 | D4 | 1+4T+30T2+4pT3+p2T4 |
| 71 | D4 | 1+14T+179T2+14pT3+p2T4 |
| 73 | D4 | 1+20T+234T2+20pT3+p2T4 |
| 79 | D4 | 1−22T+252T2−22pT3+p2T4 |
| 83 | D4 | 1+12T+127T2+12pT3+p2T4 |
| 89 | D4 | 1−18T+232T2−18pT3+p2T4 |
| 97 | D4 | 1−22T+312T2−22pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.907087079188679987349114491578, −8.551114141832779612209200415234, −8.128566454951051357982948207637, −7.71176653963758680456671370099, −7.52762529710846723322839369210, −7.30175441238869628610376847070, −6.67390066077669515326965706375, −6.10442559899069989064364781896, −5.85847139206074798344123280612, −5.31840368647455923100676110416, −4.95256159029416531923328418827, −4.84688452923613685087150192246, −3.75744449828790083603113475907, −3.32195737050018164203386438444, −2.65052789659500072464411331977, −2.35737155687156421438091072128, −1.65009900268749605715328001033, −1.59742641325301888831450611010, 0, 0,
1.59742641325301888831450611010, 1.65009900268749605715328001033, 2.35737155687156421438091072128, 2.65052789659500072464411331977, 3.32195737050018164203386438444, 3.75744449828790083603113475907, 4.84688452923613685087150192246, 4.95256159029416531923328418827, 5.31840368647455923100676110416, 5.85847139206074798344123280612, 6.10442559899069989064364781896, 6.67390066077669515326965706375, 7.30175441238869628610376847070, 7.52762529710846723322839369210, 7.71176653963758680456671370099, 8.128566454951051357982948207637, 8.551114141832779612209200415234, 8.907087079188679987349114491578