L(s) = 1 | − 2·2-s + 3·4-s + 2·5-s + 2·7-s − 4·8-s − 4·10-s − 8·11-s − 2·13-s − 4·14-s + 5·16-s + 6·20-s + 16·22-s + 2·23-s − 4·25-s + 4·26-s + 6·28-s − 16·29-s + 8·31-s − 6·32-s + 4·35-s − 12·37-s − 8·40-s − 6·41-s − 4·43-s − 24·44-s − 4·46-s − 8·47-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 3/2·4-s + 0.894·5-s + 0.755·7-s − 1.41·8-s − 1.26·10-s − 2.41·11-s − 0.554·13-s − 1.06·14-s + 5/4·16-s + 1.34·20-s + 3.41·22-s + 0.417·23-s − 4/5·25-s + 0.784·26-s + 1.13·28-s − 2.97·29-s + 1.43·31-s − 1.06·32-s + 0.676·35-s − 1.97·37-s − 1.26·40-s − 0.937·41-s − 0.609·43-s − 3.61·44-s − 0.589·46-s − 1.16·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4435236 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4435236 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | $C_1$ | \( ( 1 + T )^{2} \) |
| 3 | | \( 1 \) |
| 13 | $C_1$ | \( ( 1 + T )^{2} \) |
good | 5 | $D_{4}$ | \( 1 - 2 T + 8 T^{2} - 2 p T^{3} + p^{2} T^{4} \) |
| 7 | $D_{4}$ | \( 1 - 2 T + 3 T^{2} - 2 p T^{3} + p^{2} T^{4} \) |
| 11 | $D_{4}$ | \( 1 + 8 T + 35 T^{2} + 8 p T^{3} + p^{2} T^{4} \) |
| 17 | $C_2^2$ | \( 1 - 14 T^{2} + p^{2} T^{4} \) |
| 19 | $C_2^2$ | \( 1 + 35 T^{2} + p^{2} T^{4} \) |
| 23 | $D_{4}$ | \( 1 - 2 T + 20 T^{2} - 2 p T^{3} + p^{2} T^{4} \) |
| 29 | $D_{4}$ | \( 1 + 16 T + 119 T^{2} + 16 p T^{3} + p^{2} T^{4} \) |
| 31 | $D_{4}$ | \( 1 - 8 T + 66 T^{2} - 8 p T^{3} + p^{2} T^{4} \) |
| 37 | $D_{4}$ | \( 1 + 12 T + 98 T^{2} + 12 p T^{3} + p^{2} T^{4} \) |
| 41 | $D_{4}$ | \( 1 + 6 T + 88 T^{2} + 6 p T^{3} + p^{2} T^{4} \) |
| 43 | $D_{4}$ | \( 1 + 4 T + 42 T^{2} + 4 p T^{3} + p^{2} T^{4} \) |
| 47 | $D_{4}$ | \( 1 + 8 T + 98 T^{2} + 8 p T^{3} + p^{2} T^{4} \) |
| 53 | $C_2^2$ | \( 1 + 31 T^{2} + p^{2} T^{4} \) |
| 59 | $D_{4}$ | \( 1 + 4 T - 25 T^{2} + 4 p T^{3} + p^{2} T^{4} \) |
| 61 | $D_{4}$ | \( 1 + 4 T + 99 T^{2} + 4 p T^{3} + p^{2} T^{4} \) |
| 67 | $D_{4}$ | \( 1 + 4 T + 30 T^{2} + 4 p T^{3} + p^{2} T^{4} \) |
| 71 | $D_{4}$ | \( 1 + 14 T + 179 T^{2} + 14 p T^{3} + p^{2} T^{4} \) |
| 73 | $D_{4}$ | \( 1 + 20 T + 234 T^{2} + 20 p T^{3} + p^{2} T^{4} \) |
| 79 | $D_{4}$ | \( 1 - 22 T + 252 T^{2} - 22 p T^{3} + p^{2} T^{4} \) |
| 83 | $D_{4}$ | \( 1 + 12 T + 127 T^{2} + 12 p T^{3} + p^{2} T^{4} \) |
| 89 | $D_{4}$ | \( 1 - 18 T + 232 T^{2} - 18 p T^{3} + p^{2} T^{4} \) |
| 97 | $D_{4}$ | \( 1 - 22 T + 312 T^{2} - 22 p T^{3} + p^{2} T^{4} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.907087079188679987349114491578, −8.551114141832779612209200415234, −8.128566454951051357982948207637, −7.71176653963758680456671370099, −7.52762529710846723322839369210, −7.30175441238869628610376847070, −6.67390066077669515326965706375, −6.10442559899069989064364781896, −5.85847139206074798344123280612, −5.31840368647455923100676110416, −4.95256159029416531923328418827, −4.84688452923613685087150192246, −3.75744449828790083603113475907, −3.32195737050018164203386438444, −2.65052789659500072464411331977, −2.35737155687156421438091072128, −1.65009900268749605715328001033, −1.59742641325301888831450611010, 0, 0,
1.59742641325301888831450611010, 1.65009900268749605715328001033, 2.35737155687156421438091072128, 2.65052789659500072464411331977, 3.32195737050018164203386438444, 3.75744449828790083603113475907, 4.84688452923613685087150192246, 4.95256159029416531923328418827, 5.31840368647455923100676110416, 5.85847139206074798344123280612, 6.10442559899069989064364781896, 6.67390066077669515326965706375, 7.30175441238869628610376847070, 7.52762529710846723322839369210, 7.71176653963758680456671370099, 8.128566454951051357982948207637, 8.551114141832779612209200415234, 8.907087079188679987349114491578