Properties

Label 2-46e2-1.1-c3-0-37
Degree $2$
Conductor $2116$
Sign $1$
Analytic cond. $124.848$
Root an. cond. $11.1735$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.73·3-s + 8.82·5-s + 28.0·7-s − 4.55·9-s + 43.9·11-s − 73.8·13-s − 41.7·15-s − 52.6·17-s − 134.·19-s − 133.·21-s − 47.1·25-s + 149.·27-s + 149.·29-s + 42.5·31-s − 208.·33-s + 247.·35-s − 46.7·37-s + 349.·39-s + 159.·41-s + 423.·43-s − 40.2·45-s + 427.·47-s + 446.·49-s + 249.·51-s − 703.·53-s + 387.·55-s + 637.·57-s + ⋯
L(s)  = 1  − 0.911·3-s + 0.788·5-s + 1.51·7-s − 0.168·9-s + 1.20·11-s − 1.57·13-s − 0.719·15-s − 0.751·17-s − 1.62·19-s − 1.38·21-s − 0.377·25-s + 1.06·27-s + 0.959·29-s + 0.246·31-s − 1.09·33-s + 1.19·35-s − 0.207·37-s + 1.43·39-s + 0.609·41-s + 1.50·43-s − 0.133·45-s + 1.32·47-s + 1.30·49-s + 0.684·51-s − 1.82·53-s + 0.950·55-s + 1.48·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2116 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2116 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2116\)    =    \(2^{2} \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(124.848\)
Root analytic conductor: \(11.1735\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2116,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.880010556\)
\(L(\frac12)\) \(\approx\) \(1.880010556\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 \)
good3 \( 1 + 4.73T + 27T^{2} \)
5 \( 1 - 8.82T + 125T^{2} \)
7 \( 1 - 28.0T + 343T^{2} \)
11 \( 1 - 43.9T + 1.33e3T^{2} \)
13 \( 1 + 73.8T + 2.19e3T^{2} \)
17 \( 1 + 52.6T + 4.91e3T^{2} \)
19 \( 1 + 134.T + 6.85e3T^{2} \)
29 \( 1 - 149.T + 2.43e4T^{2} \)
31 \( 1 - 42.5T + 2.97e4T^{2} \)
37 \( 1 + 46.7T + 5.06e4T^{2} \)
41 \( 1 - 159.T + 6.89e4T^{2} \)
43 \( 1 - 423.T + 7.95e4T^{2} \)
47 \( 1 - 427.T + 1.03e5T^{2} \)
53 \( 1 + 703.T + 1.48e5T^{2} \)
59 \( 1 - 168.T + 2.05e5T^{2} \)
61 \( 1 - 436.T + 2.26e5T^{2} \)
67 \( 1 - 100.T + 3.00e5T^{2} \)
71 \( 1 + 537.T + 3.57e5T^{2} \)
73 \( 1 + 317.T + 3.89e5T^{2} \)
79 \( 1 - 907.T + 4.93e5T^{2} \)
83 \( 1 + 158.T + 5.71e5T^{2} \)
89 \( 1 - 444.T + 7.04e5T^{2} \)
97 \( 1 - 539.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.798999567459029570850917895779, −8.000688873413205001219842381643, −7.00090525480374584668982045940, −6.28438281662785667740070606516, −5.60706053710268088361771171418, −4.67365443851109549366430123573, −4.33180445891842381540392653129, −2.48450493756122934187239730663, −1.83840955048465475960573866486, −0.65385985657322530402091353097, 0.65385985657322530402091353097, 1.83840955048465475960573866486, 2.48450493756122934187239730663, 4.33180445891842381540392653129, 4.67365443851109549366430123573, 5.60706053710268088361771171418, 6.28438281662785667740070606516, 7.00090525480374584668982045940, 8.000688873413205001219842381643, 8.798999567459029570850917895779

Graph of the $Z$-function along the critical line