L(s) = 1 | + (−0.669 + 0.743i)2-s + (−0.104 − 0.994i)4-s + (0.809 + 0.587i)8-s + (−0.978 + 0.207i)9-s + (0.978 + 0.207i)11-s + (−0.978 + 0.207i)16-s + (0.5 − 0.866i)18-s + (−0.809 + 0.587i)22-s + (1.01 − 0.587i)23-s + (0.104 + 0.994i)25-s + (0.5 + 0.363i)29-s + (0.500 − 0.866i)32-s + (0.309 + 0.951i)36-s + (−0.169 + 1.60i)37-s − 1.90i·43-s + (0.104 − 0.994i)44-s + ⋯ |
L(s) = 1 | + (−0.669 + 0.743i)2-s + (−0.104 − 0.994i)4-s + (0.809 + 0.587i)8-s + (−0.978 + 0.207i)9-s + (0.978 + 0.207i)11-s + (−0.978 + 0.207i)16-s + (0.5 − 0.866i)18-s + (−0.809 + 0.587i)22-s + (1.01 − 0.587i)23-s + (0.104 + 0.994i)25-s + (0.5 + 0.363i)29-s + (0.500 − 0.866i)32-s + (0.309 + 0.951i)36-s + (−0.169 + 1.60i)37-s − 1.90i·43-s + (0.104 − 0.994i)44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.440 - 0.897i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.440 - 0.897i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8069723995\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8069723995\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.669 - 0.743i)T \) |
| 7 | \( 1 \) |
| 11 | \( 1 + (-0.978 - 0.207i)T \) |
good | 3 | \( 1 + (0.978 - 0.207i)T^{2} \) |
| 5 | \( 1 + (-0.104 - 0.994i)T^{2} \) |
| 13 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 17 | \( 1 + (0.913 + 0.406i)T^{2} \) |
| 19 | \( 1 + (-0.669 - 0.743i)T^{2} \) |
| 23 | \( 1 + (-1.01 + 0.587i)T + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 - 0.363i)T + (0.309 + 0.951i)T^{2} \) |
| 31 | \( 1 + (0.104 - 0.994i)T^{2} \) |
| 37 | \( 1 + (0.169 - 1.60i)T + (-0.978 - 0.207i)T^{2} \) |
| 41 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 43 | \( 1 + 1.90iT - T^{2} \) |
| 47 | \( 1 + (-0.669 - 0.743i)T^{2} \) |
| 53 | \( 1 + (-0.413 - 0.459i)T + (-0.104 + 0.994i)T^{2} \) |
| 59 | \( 1 + (-0.669 + 0.743i)T^{2} \) |
| 61 | \( 1 + (-0.104 - 0.994i)T^{2} \) |
| 67 | \( 1 + (-1.64 - 0.951i)T + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (-1.80 + 0.587i)T + (0.809 - 0.587i)T^{2} \) |
| 73 | \( 1 + (0.669 - 0.743i)T^{2} \) |
| 79 | \( 1 + (-0.395 - 1.86i)T + (-0.913 + 0.406i)T^{2} \) |
| 83 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 89 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.130028038160275433510137426693, −8.685942677687999537050725162291, −7.974482428991566736845477576649, −6.92055649974477032959923967532, −6.56991300137705390186050617789, −5.48219773625376493759171818070, −4.93703105365822843540017382220, −3.71095434632529169431390736870, −2.45755004255016039316357905292, −1.14768862277056526561571673262,
0.880608936908200303754094222642, 2.23007909578011927921338333246, 3.17529608929992371105153780895, 3.95166811278352345061858988313, 4.99512658484538926689602366344, 6.15128604865641851477438993031, 6.85764378650936362607384150821, 7.86902691816112529357822568261, 8.514509314307978002327384301147, 9.218746893590908631462904600639