L(s) = 1 | + (−0.669 + 0.743i)2-s + (−0.104 − 0.994i)4-s + (0.809 + 0.587i)8-s + (−0.978 + 0.207i)9-s + (0.978 + 0.207i)11-s + (−0.978 + 0.207i)16-s + (0.5 − 0.866i)18-s + (−0.809 + 0.587i)22-s + (1.01 − 0.587i)23-s + (0.104 + 0.994i)25-s + (0.5 + 0.363i)29-s + (0.500 − 0.866i)32-s + (0.309 + 0.951i)36-s + (−0.169 + 1.60i)37-s − 1.90i·43-s + (0.104 − 0.994i)44-s + ⋯ |
L(s) = 1 | + (−0.669 + 0.743i)2-s + (−0.104 − 0.994i)4-s + (0.809 + 0.587i)8-s + (−0.978 + 0.207i)9-s + (0.978 + 0.207i)11-s + (−0.978 + 0.207i)16-s + (0.5 − 0.866i)18-s + (−0.809 + 0.587i)22-s + (1.01 − 0.587i)23-s + (0.104 + 0.994i)25-s + (0.5 + 0.363i)29-s + (0.500 − 0.866i)32-s + (0.309 + 0.951i)36-s + (−0.169 + 1.60i)37-s − 1.90i·43-s + (0.104 − 0.994i)44-s + ⋯ |
Λ(s)=(=(2156s/2ΓC(s)L(s)(0.440−0.897i)Λ(1−s)
Λ(s)=(=(2156s/2ΓC(s)L(s)(0.440−0.897i)Λ(1−s)
Degree: |
2 |
Conductor: |
2156
= 22⋅72⋅11
|
Sign: |
0.440−0.897i
|
Analytic conductor: |
1.07598 |
Root analytic conductor: |
1.03729 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2156(1439,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2156, ( :0), 0.440−0.897i)
|
Particular Values
L(21) |
≈ |
0.8069723995 |
L(21) |
≈ |
0.8069723995 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.669−0.743i)T |
| 7 | 1 |
| 11 | 1+(−0.978−0.207i)T |
good | 3 | 1+(0.978−0.207i)T2 |
| 5 | 1+(−0.104−0.994i)T2 |
| 13 | 1+(−0.809−0.587i)T2 |
| 17 | 1+(0.913+0.406i)T2 |
| 19 | 1+(−0.669−0.743i)T2 |
| 23 | 1+(−1.01+0.587i)T+(0.5−0.866i)T2 |
| 29 | 1+(−0.5−0.363i)T+(0.309+0.951i)T2 |
| 31 | 1+(0.104−0.994i)T2 |
| 37 | 1+(0.169−1.60i)T+(−0.978−0.207i)T2 |
| 41 | 1+(0.309−0.951i)T2 |
| 43 | 1+1.90iT−T2 |
| 47 | 1+(−0.669−0.743i)T2 |
| 53 | 1+(−0.413−0.459i)T+(−0.104+0.994i)T2 |
| 59 | 1+(−0.669+0.743i)T2 |
| 61 | 1+(−0.104−0.994i)T2 |
| 67 | 1+(−1.64−0.951i)T+(0.5+0.866i)T2 |
| 71 | 1+(−1.80+0.587i)T+(0.809−0.587i)T2 |
| 73 | 1+(0.669−0.743i)T2 |
| 79 | 1+(−0.395−1.86i)T+(−0.913+0.406i)T2 |
| 83 | 1+(0.809−0.587i)T2 |
| 89 | 1+(−0.5+0.866i)T2 |
| 97 | 1+(−0.809−0.587i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.130028038160275433510137426693, −8.685942677687999537050725162291, −7.974482428991566736845477576649, −6.92055649974477032959923967532, −6.56991300137705390186050617789, −5.48219773625376493759171818070, −4.93703105365822843540017382220, −3.71095434632529169431390736870, −2.45755004255016039316357905292, −1.14768862277056526561571673262,
0.880608936908200303754094222642, 2.23007909578011927921338333246, 3.17529608929992371105153780895, 3.95166811278352345061858988313, 4.99512658484538926689602366344, 6.15128604865641851477438993031, 6.85764378650936362607384150821, 7.86902691816112529357822568261, 8.514509314307978002327384301147, 9.218746893590908631462904600639