L(s) = 1 | + 3-s + 5-s + 11-s + 15-s − 23-s − 27-s + 31-s + 33-s − 37-s − 2·47-s + 2·53-s + 55-s + 59-s − 67-s − 69-s − 71-s − 81-s + 89-s + 93-s + 97-s − 2·103-s − 111-s − 113-s − 115-s + ⋯ |
L(s) = 1 | + 3-s + 5-s + 11-s + 15-s − 23-s − 27-s + 31-s + 33-s − 37-s − 2·47-s + 2·53-s + 55-s + 59-s − 67-s − 69-s − 71-s − 81-s + 89-s + 93-s + 97-s − 2·103-s − 111-s − 113-s − 115-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.916557754\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.916557754\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 11 | \( 1 - T \) |
good | 3 | \( 1 - T + T^{2} \) |
| 5 | \( 1 - T + T^{2} \) |
| 13 | \( ( 1 - T )( 1 + T ) \) |
| 17 | \( ( 1 - T )( 1 + T ) \) |
| 19 | \( ( 1 - T )( 1 + T ) \) |
| 23 | \( 1 + T + T^{2} \) |
| 29 | \( ( 1 - T )( 1 + T ) \) |
| 31 | \( 1 - T + T^{2} \) |
| 37 | \( 1 + T + T^{2} \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( ( 1 - T )( 1 + T ) \) |
| 47 | \( ( 1 + T )^{2} \) |
| 53 | \( ( 1 - T )^{2} \) |
| 59 | \( 1 - T + T^{2} \) |
| 61 | \( ( 1 - T )( 1 + T ) \) |
| 67 | \( 1 + T + T^{2} \) |
| 71 | \( 1 + T + T^{2} \) |
| 73 | \( ( 1 - T )( 1 + T ) \) |
| 79 | \( ( 1 - T )( 1 + T ) \) |
| 83 | \( ( 1 - T )( 1 + T ) \) |
| 89 | \( 1 - T + T^{2} \) |
| 97 | \( 1 - T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.210701067370210101002090936440, −8.596855369050174302178726013670, −7.926063135390894925876445683631, −6.88673750241902464825793637545, −6.16392564512325682840180943059, −5.40221853511302549423410898486, −4.22598581134903796482425926069, −3.38634873319861200844378269917, −2.39216894609072984070313684475, −1.58972073244680755357209865646,
1.58972073244680755357209865646, 2.39216894609072984070313684475, 3.38634873319861200844378269917, 4.22598581134903796482425926069, 5.40221853511302549423410898486, 6.16392564512325682840180943059, 6.88673750241902464825793637545, 7.926063135390894925876445683631, 8.596855369050174302178726013670, 9.210701067370210101002090936440