L(s) = 1 | + 4·9-s + 2·11-s + 8·23-s + 10·25-s + 8·29-s + 8·37-s + 8·43-s + 8·53-s + 16·67-s + 20·79-s + 9·81-s + 8·99-s + 24·107-s + 20·109-s + 56·113-s + 121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 48·169-s + 173-s + ⋯ |
L(s) = 1 | + 4/3·9-s + 0.603·11-s + 1.66·23-s + 2·25-s + 1.48·29-s + 1.31·37-s + 1.21·43-s + 1.09·53-s + 1.95·67-s + 2.25·79-s + 81-s + 0.804·99-s + 2.32·107-s + 1.91·109-s + 5.26·113-s + 1/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 3.69·169-s + 0.0760·173-s + ⋯ |
Λ(s)=(=((28⋅78⋅114)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((28⋅78⋅114)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
28⋅78⋅114
|
Sign: |
1
|
Analytic conductor: |
87842.2 |
Root analytic conductor: |
4.14918 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 28⋅78⋅114, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
10.31134814 |
L(21) |
≈ |
10.31134814 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 7 | | 1 |
| 11 | C2 | (1−T+T2)2 |
good | 3 | C23 | 1−4T2+7T4−4p2T6+p4T8 |
| 5 | C22 | (1−pT2+p2T4)2 |
| 13 | C22 | (1+24T2+p2T4)2 |
| 17 | C23 | 1+16T2−33T4+16p2T6+p4T8 |
| 19 | C23 | 1−30T2+539T4−30p2T6+p4T8 |
| 23 | C22 | (1−4T−7T2−4pT3+p2T4)2 |
| 29 | C2 | (1−2T+pT2)4 |
| 31 | C23 | 1−44T2+975T4−44p2T6+p4T8 |
| 37 | C22 | (1−4T−21T2−4pT3+p2T4)2 |
| 41 | C22 | (1+80T2+p2T4)2 |
| 43 | C2 | (1−2T+pT2)4 |
| 47 | C23 | 1+4T2−2193T4+4p2T6+p4T8 |
| 53 | C22 | (1−4T−37T2−4pT3+p2T4)2 |
| 59 | C23 | 1−100T2+6519T4−100p2T6+p4T8 |
| 61 | C23 | 1+40T2−2121T4+40p2T6+p4T8 |
| 67 | C22 | (1−8T−3T2−8pT3+p2T4)2 |
| 71 | C2 | (1+pT2)4 |
| 73 | C23 | 1−144T2+15407T4−144p2T6+p4T8 |
| 79 | C22 | (1−10T+21T2−10pT3+p2T4)2 |
| 83 | C22 | (1+94T2+p2T4)2 |
| 89 | C23 | 1−50T2−5421T4−50p2T6+p4T8 |
| 97 | C22 | (1+122T2+p2T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.61029443398192901305017912042, −6.19913271860185442274621953720, −6.12499582334188336426202107904, −5.83802496510041860472718140662, −5.73895242078462659290465345690, −5.18517289328380608426318316847, −5.10263312365293997878856193351, −5.00481534702537304736312482120, −4.82547367399436220357001523186, −4.43854773878332127387637844526, −4.24742316397698469615886274129, −4.16312006777725377835686032411, −4.13894262629125312046146407048, −3.31553234841752865066648180006, −3.24999023558210615085528883730, −3.24532167763463205435077415999, −3.18501656123145836384266699957, −2.41499464965090300152443686101, −2.34704173477180368403423305598, −2.07962606377655548064038089994, −1.91967395231479030561324067062, −1.20921582178916836626915820982, −0.984167329389546213044403349925, −0.810889429789893705305067641421, −0.72919177675003228043815857496,
0.72919177675003228043815857496, 0.810889429789893705305067641421, 0.984167329389546213044403349925, 1.20921582178916836626915820982, 1.91967395231479030561324067062, 2.07962606377655548064038089994, 2.34704173477180368403423305598, 2.41499464965090300152443686101, 3.18501656123145836384266699957, 3.24532167763463205435077415999, 3.24999023558210615085528883730, 3.31553234841752865066648180006, 4.13894262629125312046146407048, 4.16312006777725377835686032411, 4.24742316397698469615886274129, 4.43854773878332127387637844526, 4.82547367399436220357001523186, 5.00481534702537304736312482120, 5.10263312365293997878856193351, 5.18517289328380608426318316847, 5.73895242078462659290465345690, 5.83802496510041860472718140662, 6.12499582334188336426202107904, 6.19913271860185442274621953720, 6.61029443398192901305017912042