Properties

Label 2-2156-1.1-c3-0-86
Degree $2$
Conductor $2156$
Sign $-1$
Analytic cond. $127.208$
Root an. cond. $11.2786$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.21·3-s + 20.5·5-s − 25.5·9-s + 11·11-s − 66.7·13-s − 24.9·15-s + 59.7·17-s − 131.·19-s + 163.·23-s + 296.·25-s + 63.7·27-s − 77.2·29-s − 206.·31-s − 13.3·33-s − 215.·37-s + 81.0·39-s + 403.·41-s + 43.5·43-s − 523.·45-s − 69.1·47-s − 72.5·51-s + 334.·53-s + 225.·55-s + 159.·57-s − 681.·59-s + 24.4·61-s − 1.36e3·65-s + ⋯
L(s)  = 1  − 0.233·3-s + 1.83·5-s − 0.945·9-s + 0.301·11-s − 1.42·13-s − 0.429·15-s + 0.852·17-s − 1.58·19-s + 1.47·23-s + 2.37·25-s + 0.454·27-s − 0.494·29-s − 1.19·31-s − 0.0704·33-s − 0.956·37-s + 0.332·39-s + 1.53·41-s + 0.154·43-s − 1.73·45-s − 0.214·47-s − 0.199·51-s + 0.868·53-s + 0.553·55-s + 0.369·57-s − 1.50·59-s + 0.0514·61-s − 2.61·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2156 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2156\)    =    \(2^{2} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(127.208\)
Root analytic conductor: \(11.2786\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2156,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
11 \( 1 - 11T \)
good3 \( 1 + 1.21T + 27T^{2} \)
5 \( 1 - 20.5T + 125T^{2} \)
13 \( 1 + 66.7T + 2.19e3T^{2} \)
17 \( 1 - 59.7T + 4.91e3T^{2} \)
19 \( 1 + 131.T + 6.85e3T^{2} \)
23 \( 1 - 163.T + 1.21e4T^{2} \)
29 \( 1 + 77.2T + 2.43e4T^{2} \)
31 \( 1 + 206.T + 2.97e4T^{2} \)
37 \( 1 + 215.T + 5.06e4T^{2} \)
41 \( 1 - 403.T + 6.89e4T^{2} \)
43 \( 1 - 43.5T + 7.95e4T^{2} \)
47 \( 1 + 69.1T + 1.03e5T^{2} \)
53 \( 1 - 334.T + 1.48e5T^{2} \)
59 \( 1 + 681.T + 2.05e5T^{2} \)
61 \( 1 - 24.4T + 2.26e5T^{2} \)
67 \( 1 + 285.T + 3.00e5T^{2} \)
71 \( 1 + 522.T + 3.57e5T^{2} \)
73 \( 1 + 592.T + 3.89e5T^{2} \)
79 \( 1 + 92.7T + 4.93e5T^{2} \)
83 \( 1 + 480.T + 5.71e5T^{2} \)
89 \( 1 + 1.19e3T + 7.04e5T^{2} \)
97 \( 1 + 308.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.624022438636374073013344230648, −7.37070202960293291644094104508, −6.67386111094877249840353820363, −5.75319267757119821028959106174, −5.44434248123423429873751548043, −4.51055798052345062574909610843, −3.00871403155404381812519979827, −2.34635384866425791555743580678, −1.40745175136393883945949450616, 0, 1.40745175136393883945949450616, 2.34635384866425791555743580678, 3.00871403155404381812519979827, 4.51055798052345062574909610843, 5.44434248123423429873751548043, 5.75319267757119821028959106174, 6.67386111094877249840353820363, 7.37070202960293291644094104508, 8.624022438636374073013344230648

Graph of the $Z$-function along the critical line