L(s) = 1 | + (−0.5 − 0.866i)5-s + (0.866 − 1.5i)7-s + (−0.866 − 1.5i)23-s + (−0.499 + 0.866i)25-s + (−0.5 + 0.866i)29-s − 1.73·35-s + (0.5 + 0.866i)41-s + (0.866 − 1.5i)47-s + (−1 − 1.73i)49-s + (−0.5 + 0.866i)61-s + (−0.866 − 1.5i)67-s + (−0.866 + 1.5i)83-s + 89-s + (1 − 1.73i)101-s + 1.73·107-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)5-s + (0.866 − 1.5i)7-s + (−0.866 − 1.5i)23-s + (−0.499 + 0.866i)25-s + (−0.5 + 0.866i)29-s − 1.73·35-s + (0.5 + 0.866i)41-s + (0.866 − 1.5i)47-s + (−1 − 1.73i)49-s + (−0.5 + 0.866i)61-s + (−0.866 − 1.5i)67-s + (−0.866 + 1.5i)83-s + 89-s + (1 − 1.73i)101-s + 1.73·107-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.173 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.173 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.064931203\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.064931203\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
good | 7 | \( 1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.866 - 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 - T + T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.844349915268557763908733644449, −8.250418633241100987435494834928, −7.56958714984671079574676366834, −6.94358138324772474405549435297, −5.80882538162803068541835881723, −4.72765627252375934363096693239, −4.35368246118398338684239370523, −3.47721463976858957705235265307, −1.88191527200502079658863358174, −0.76524831502332005118360907554,
1.85507581649513027495424109356, 2.66039398739313116975375322202, 3.68691545613280419740794780920, 4.66258351014817769349426701055, 5.73698672350256743905285147228, 6.10152030812417905127427122256, 7.43865526607474839635750959135, 7.78655611514018007652620768231, 8.697566198040515126857762338451, 9.368157754533704897246694691815