L(s) = 1 | + (−0.5 − 0.866i)5-s + (0.866 − 1.5i)7-s + (−0.866 − 1.5i)23-s + (−0.499 + 0.866i)25-s + (−0.5 + 0.866i)29-s − 1.73·35-s + (0.5 + 0.866i)41-s + (0.866 − 1.5i)47-s + (−1 − 1.73i)49-s + (−0.5 + 0.866i)61-s + (−0.866 − 1.5i)67-s + (−0.866 + 1.5i)83-s + 89-s + (1 − 1.73i)101-s + 1.73·107-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)5-s + (0.866 − 1.5i)7-s + (−0.866 − 1.5i)23-s + (−0.499 + 0.866i)25-s + (−0.5 + 0.866i)29-s − 1.73·35-s + (0.5 + 0.866i)41-s + (0.866 − 1.5i)47-s + (−1 − 1.73i)49-s + (−0.5 + 0.866i)61-s + (−0.866 − 1.5i)67-s + (−0.866 + 1.5i)83-s + 89-s + (1 − 1.73i)101-s + 1.73·107-s + ⋯ |
Λ(s)=(=(2160s/2ΓC(s)L(s)(−0.173+0.984i)Λ(1−s)
Λ(s)=(=(2160s/2ΓC(s)L(s)(−0.173+0.984i)Λ(1−s)
Degree: |
2 |
Conductor: |
2160
= 24⋅33⋅5
|
Sign: |
−0.173+0.984i
|
Analytic conductor: |
1.07798 |
Root analytic conductor: |
1.03825 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2160(559,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2160, ( :0), −0.173+0.984i)
|
Particular Values
L(21) |
≈ |
1.064931203 |
L(21) |
≈ |
1.064931203 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(0.5+0.866i)T |
good | 7 | 1+(−0.866+1.5i)T+(−0.5−0.866i)T2 |
| 11 | 1+(0.5+0.866i)T2 |
| 13 | 1+(0.5−0.866i)T2 |
| 17 | 1−T2 |
| 19 | 1−T2 |
| 23 | 1+(0.866+1.5i)T+(−0.5+0.866i)T2 |
| 29 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 31 | 1+(0.5−0.866i)T2 |
| 37 | 1−T2 |
| 41 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 43 | 1+(−0.5−0.866i)T2 |
| 47 | 1+(−0.866+1.5i)T+(−0.5−0.866i)T2 |
| 53 | 1−T2 |
| 59 | 1+(0.5−0.866i)T2 |
| 61 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 67 | 1+(0.866+1.5i)T+(−0.5+0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1−T2 |
| 79 | 1+(0.5+0.866i)T2 |
| 83 | 1+(0.866−1.5i)T+(−0.5−0.866i)T2 |
| 89 | 1−T+T2 |
| 97 | 1+(0.5+0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.844349915268557763908733644449, −8.250418633241100987435494834928, −7.56958714984671079574676366834, −6.94358138324772474405549435297, −5.80882538162803068541835881723, −4.72765627252375934363096693239, −4.35368246118398338684239370523, −3.47721463976858957705235265307, −1.88191527200502079658863358174, −0.76524831502332005118360907554,
1.85507581649513027495424109356, 2.66039398739313116975375322202, 3.68691545613280419740794780920, 4.66258351014817769349426701055, 5.73698672350256743905285147228, 6.10152030812417905127427122256, 7.43865526607474839635750959135, 7.78655611514018007652620768231, 8.697566198040515126857762338451, 9.368157754533704897246694691815