L(s) = 1 | + (−0.707 + 0.707i)5-s + i·7-s + 1.41i·11-s − i·13-s − 19-s − 1.41·23-s − 1.00i·25-s + 1.41i·29-s + (−0.707 − 0.707i)35-s + i·37-s − 1.41i·41-s − 1.41·53-s + (−1.00 − 1.00i)55-s − 61-s + (0.707 + 0.707i)65-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)5-s + i·7-s + 1.41i·11-s − i·13-s − 19-s − 1.41·23-s − 1.00i·25-s + 1.41i·29-s + (−0.707 − 0.707i)35-s + i·37-s − 1.41i·41-s − 1.41·53-s + (−1.00 − 1.00i)55-s − 61-s + (0.707 + 0.707i)65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6903379110\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6903379110\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.707 - 0.707i)T \) |
good | 7 | \( 1 - iT - T^{2} \) |
| 11 | \( 1 - 1.41iT - T^{2} \) |
| 13 | \( 1 + iT - T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + T + T^{2} \) |
| 23 | \( 1 + 1.41T + T^{2} \) |
| 29 | \( 1 - 1.41iT - T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 - iT - T^{2} \) |
| 41 | \( 1 + 1.41iT - T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + 1.41T + T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + T + T^{2} \) |
| 67 | \( 1 - iT - T^{2} \) |
| 71 | \( 1 - 1.41iT - T^{2} \) |
| 73 | \( 1 - iT - T^{2} \) |
| 79 | \( 1 - T + T^{2} \) |
| 83 | \( 1 - 1.41T + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.619713358843898470652388011208, −8.626772884246181481728064390979, −8.033633710346540186562753662248, −7.24232143035549380544886447272, −6.51238460270033905146623495305, −5.63076908321124070471609486504, −4.71388620877052884621676361421, −3.81147327691642548807846911105, −2.79236654733543617383755313581, −1.95934878714665840016153863370,
0.46525003722821184951591825544, 1.86200313568443260690063170890, 3.39341794277616475597240913041, 4.12912090296278936926376274417, 4.67362916347042190253038986671, 5.99004745699615919943991739275, 6.50694258561531982445029001036, 7.77110295266367842309127854352, 8.002421206310358632771626564699, 8.944814900947348085536654916066