L(s) = 1 | + (−0.707 + 0.707i)5-s + i·7-s + 1.41i·11-s − i·13-s − 19-s − 1.41·23-s − 1.00i·25-s + 1.41i·29-s + (−0.707 − 0.707i)35-s + i·37-s − 1.41i·41-s − 1.41·53-s + (−1.00 − 1.00i)55-s − 61-s + (0.707 + 0.707i)65-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)5-s + i·7-s + 1.41i·11-s − i·13-s − 19-s − 1.41·23-s − 1.00i·25-s + 1.41i·29-s + (−0.707 − 0.707i)35-s + i·37-s − 1.41i·41-s − 1.41·53-s + (−1.00 − 1.00i)55-s − 61-s + (0.707 + 0.707i)65-s + ⋯ |
Λ(s)=(=(2160s/2ΓC(s)L(s)(−0.707−0.707i)Λ(1−s)
Λ(s)=(=(2160s/2ΓC(s)L(s)(−0.707−0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
2160
= 24⋅33⋅5
|
Sign: |
−0.707−0.707i
|
Analytic conductor: |
1.07798 |
Root analytic conductor: |
1.03825 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2160(1889,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2160, ( :0), −0.707−0.707i)
|
Particular Values
L(21) |
≈ |
0.6903379110 |
L(21) |
≈ |
0.6903379110 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(0.707−0.707i)T |
good | 7 | 1−iT−T2 |
| 11 | 1−1.41iT−T2 |
| 13 | 1+iT−T2 |
| 17 | 1+T2 |
| 19 | 1+T+T2 |
| 23 | 1+1.41T+T2 |
| 29 | 1−1.41iT−T2 |
| 31 | 1+T2 |
| 37 | 1−iT−T2 |
| 41 | 1+1.41iT−T2 |
| 43 | 1−T2 |
| 47 | 1+T2 |
| 53 | 1+1.41T+T2 |
| 59 | 1−T2 |
| 61 | 1+T+T2 |
| 67 | 1−iT−T2 |
| 71 | 1−1.41iT−T2 |
| 73 | 1−iT−T2 |
| 79 | 1−T+T2 |
| 83 | 1−1.41T+T2 |
| 89 | 1−T2 |
| 97 | 1−iT−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.619713358843898470652388011208, −8.626772884246181481728064390979, −8.033633710346540186562753662248, −7.24232143035549380544886447272, −6.51238460270033905146623495305, −5.63076908321124070471609486504, −4.71388620877052884621676361421, −3.81147327691642548807846911105, −2.79236654733543617383755313581, −1.95934878714665840016153863370,
0.46525003722821184951591825544, 1.86200313568443260690063170890, 3.39341794277616475597240913041, 4.12912090296278936926376274417, 4.67362916347042190253038986671, 5.99004745699615919943991739275, 6.50694258561531982445029001036, 7.77110295266367842309127854352, 8.002421206310358632771626564699, 8.944814900947348085536654916066