Properties

Label 8-2160e4-1.1-c1e4-0-5
Degree 88
Conductor 2.177×10132.177\times 10^{13}
Sign 11
Analytic cond. 88495.988495.9
Root an. cond. 4.153034.15303
Motivic weight 11
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·19-s − 10·25-s + 16·31-s + 28·49-s − 4·61-s − 32·79-s − 28·109-s − 44·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 52·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + ⋯
L(s)  = 1  − 1.83·19-s − 2·25-s + 2.87·31-s + 4·49-s − 0.512·61-s − 3.60·79-s − 2.68·109-s − 4·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 4·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + ⋯

Functional equation

Λ(s)=((21631254)s/2ΓC(s)4L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{12} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}
Λ(s)=((21631254)s/2ΓC(s+1/2)4L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{12} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

Degree: 88
Conductor: 216312542^{16} \cdot 3^{12} \cdot 5^{4}
Sign: 11
Analytic conductor: 88495.988495.9
Root analytic conductor: 4.153034.15303
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (8, 21631254, ( :1/2,1/2,1/2,1/2), 1)(8,\ 2^{16} \cdot 3^{12} \cdot 5^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )

Particular Values

L(1)L(1) \approx 0.77520950400.7752095040
L(12)L(\frac12) \approx 0.77520950400.7752095040
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2 1 1
3 1 1
5C2C_2 (1+pT2)2 ( 1 + p T^{2} )^{2}
good7C2C_2 (1pT2)4 ( 1 - p T^{2} )^{4}
11C2C_2 (1+pT2)4 ( 1 + p T^{2} )^{4}
13C2C_2 (1pT2)4 ( 1 - p T^{2} )^{4}
17C23C_2^3 1+14T293T4+14p2T6+p4T8 1 + 14 T^{2} - 93 T^{4} + 14 p^{2} T^{6} + p^{4} T^{8}
19C22C_2^2 (1+4T3T2+4pT3+p2T4)2 ( 1 + 4 T - 3 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2}
23C23C_2^3 134T2+627T434p2T6+p4T8 1 - 34 T^{2} + 627 T^{4} - 34 p^{2} T^{6} + p^{4} T^{8}
29C2C_2 (1+pT2)4 ( 1 + p T^{2} )^{4}
31C22C_2^2 (18T+33T28pT3+p2T4)2 ( 1 - 8 T + 33 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2}
37C2C_2 (1pT2)4 ( 1 - p T^{2} )^{4}
41C2C_2 (1+pT2)4 ( 1 + p T^{2} )^{4}
43C2C_2 (1pT2)4 ( 1 - p T^{2} )^{4}
47C22C_2^2 (114T2+p2T4)2 ( 1 - 14 T^{2} + p^{2} T^{4} )^{2}
53C23C_2^3 1+86T2+4587T4+86p2T6+p4T8 1 + 86 T^{2} + 4587 T^{4} + 86 p^{2} T^{6} + p^{4} T^{8}
59C2C_2 (1+pT2)4 ( 1 + p T^{2} )^{4}
61C22C_2^2 (1+2T57T2+2pT3+p2T4)2 ( 1 + 2 T - 57 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2}
67C2C_2 (1pT2)4 ( 1 - p T^{2} )^{4}
71C2C_2 (1+pT2)4 ( 1 + p T^{2} )^{4}
73C2C_2 (1pT2)4 ( 1 - p T^{2} )^{4}
79C22C_2^2 (1+16T+177T2+16pT3+p2T4)2 ( 1 + 16 T + 177 T^{2} + 16 p T^{3} + p^{2} T^{4} )^{2}
83C23C_2^3 1154T2+16827T4154p2T6+p4T8 1 - 154 T^{2} + 16827 T^{4} - 154 p^{2} T^{6} + p^{4} T^{8}
89C2C_2 (1+pT2)4 ( 1 + p T^{2} )^{4}
97C2C_2 (1pT2)4 ( 1 - p T^{2} )^{4}
show more
show less
   L(s)=p j=18(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−6.38202947985952455331813412350, −6.24338527266760267319667286264, −6.04585073767139421091738373249, −5.75694010282644296356819880689, −5.73791444505866388055019523154, −5.46968143340456393782470328339, −5.19358487080729097839251856381, −5.05242441455579779834229351709, −4.59411762949536955101042818879, −4.45646348502415518030999229896, −4.21989337670795579039681759743, −4.15016516307278174501134584781, −3.95817035018831696407019637069, −3.75918759375632040845616557223, −3.44457491308628533649228386600, −2.92925564378062650246976573786, −2.68991472823303391582786612582, −2.63303158490606636621750028848, −2.58450369575947933647075323165, −1.97855691606459226176201303408, −1.79989341853680827774497589699, −1.55754823870179099299157319695, −1.00891017164245261018619872863, −0.807614761992021626550787113733, −0.16227331582877620967493007376, 0.16227331582877620967493007376, 0.807614761992021626550787113733, 1.00891017164245261018619872863, 1.55754823870179099299157319695, 1.79989341853680827774497589699, 1.97855691606459226176201303408, 2.58450369575947933647075323165, 2.63303158490606636621750028848, 2.68991472823303391582786612582, 2.92925564378062650246976573786, 3.44457491308628533649228386600, 3.75918759375632040845616557223, 3.95817035018831696407019637069, 4.15016516307278174501134584781, 4.21989337670795579039681759743, 4.45646348502415518030999229896, 4.59411762949536955101042818879, 5.05242441455579779834229351709, 5.19358487080729097839251856381, 5.46968143340456393782470328339, 5.73791444505866388055019523154, 5.75694010282644296356819880689, 6.04585073767139421091738373249, 6.24338527266760267319667286264, 6.38202947985952455331813412350

Graph of the ZZ-function along the critical line