L(s) = 1 | − i·5-s + 4.73i·7-s − 4.73·11-s + 6.19·13-s − 5.19i·17-s + 0.464i·19-s + 4.26·23-s − 25-s + 8.19i·29-s + 0.464i·31-s + 4.73·35-s + 2·37-s + 2.19i·41-s + 5.66i·43-s − 9.46·47-s + ⋯ |
L(s) = 1 | − 0.447i·5-s + 1.78i·7-s − 1.42·11-s + 1.71·13-s − 1.26i·17-s + 0.106i·19-s + 0.889·23-s − 0.200·25-s + 1.52i·29-s + 0.0833i·31-s + 0.799·35-s + 0.328·37-s + 0.342i·41-s + 0.863i·43-s − 1.38·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.420906987\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.420906987\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + iT \) |
good | 7 | \( 1 - 4.73iT - 7T^{2} \) |
| 11 | \( 1 + 4.73T + 11T^{2} \) |
| 13 | \( 1 - 6.19T + 13T^{2} \) |
| 17 | \( 1 + 5.19iT - 17T^{2} \) |
| 19 | \( 1 - 0.464iT - 19T^{2} \) |
| 23 | \( 1 - 4.26T + 23T^{2} \) |
| 29 | \( 1 - 8.19iT - 29T^{2} \) |
| 31 | \( 1 - 0.464iT - 31T^{2} \) |
| 37 | \( 1 - 2T + 37T^{2} \) |
| 41 | \( 1 - 2.19iT - 41T^{2} \) |
| 43 | \( 1 - 5.66iT - 43T^{2} \) |
| 47 | \( 1 + 9.46T + 47T^{2} \) |
| 53 | \( 1 - 11.1iT - 53T^{2} \) |
| 59 | \( 1 - 5.66T + 59T^{2} \) |
| 61 | \( 1 + T + 61T^{2} \) |
| 67 | \( 1 - 10.3iT - 67T^{2} \) |
| 71 | \( 1 + 4.73T + 71T^{2} \) |
| 73 | \( 1 + 4.19T + 73T^{2} \) |
| 79 | \( 1 - 9.92iT - 79T^{2} \) |
| 83 | \( 1 + 5.19T + 83T^{2} \) |
| 89 | \( 1 - 14.1iT - 89T^{2} \) |
| 97 | \( 1 + 8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.052813649819912957001489825625, −8.605120203779839910341464199134, −7.968977223843871554604815401697, −6.88751746539785423955840514277, −5.87922755984119348496344402269, −5.37626723346144320415770465442, −4.69909309616188821483787809321, −3.18986345766012403224163924120, −2.62688782480522439807356017849, −1.31398808466998804631050492899,
0.52576368104977398623015708558, 1.80484765349897089130126594125, 3.24554581397598036876368584785, 3.84678764616181897334961248691, 4.72271820736228343799453897253, 5.88089786954278546467640145991, 6.54801771529231945686448002656, 7.41428225271384938875282564884, 8.019484424208002091569181280772, 8.672676622884276120883968149444