Properties

Label 2-2160-12.11-c1-0-6
Degree $2$
Conductor $2160$
Sign $-i$
Analytic cond. $17.2476$
Root an. cond. $4.15303$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·5-s − 1.26i·7-s − 1.26·11-s − 4.19·13-s − 5.19i·17-s + 6.46i·19-s + 7.73·23-s − 25-s + 2.19i·29-s + 6.46i·31-s + 1.26·35-s + 2·37-s + 8.19i·41-s + 11.6i·43-s − 2.53·47-s + ⋯
L(s)  = 1  + 0.447i·5-s − 0.479i·7-s − 0.382·11-s − 1.16·13-s − 1.26i·17-s + 1.48i·19-s + 1.61·23-s − 0.200·25-s + 0.407i·29-s + 1.16i·31-s + 0.214·35-s + 0.328·37-s + 1.28i·41-s + 1.77i·43-s − 0.369·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2160\)    =    \(2^{4} \cdot 3^{3} \cdot 5\)
Sign: $-i$
Analytic conductor: \(17.2476\)
Root analytic conductor: \(4.15303\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2160} (431, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2160,\ (\ :1/2),\ -i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.186757767\)
\(L(\frac12)\) \(\approx\) \(1.186757767\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - iT \)
good7 \( 1 + 1.26iT - 7T^{2} \)
11 \( 1 + 1.26T + 11T^{2} \)
13 \( 1 + 4.19T + 13T^{2} \)
17 \( 1 + 5.19iT - 17T^{2} \)
19 \( 1 - 6.46iT - 19T^{2} \)
23 \( 1 - 7.73T + 23T^{2} \)
29 \( 1 - 2.19iT - 29T^{2} \)
31 \( 1 - 6.46iT - 31T^{2} \)
37 \( 1 - 2T + 37T^{2} \)
41 \( 1 - 8.19iT - 41T^{2} \)
43 \( 1 - 11.6iT - 43T^{2} \)
47 \( 1 + 2.53T + 47T^{2} \)
53 \( 1 + 0.803iT - 53T^{2} \)
59 \( 1 + 11.6T + 59T^{2} \)
61 \( 1 + T + 61T^{2} \)
67 \( 1 - 10.3iT - 67T^{2} \)
71 \( 1 + 1.26T + 71T^{2} \)
73 \( 1 - 6.19T + 73T^{2} \)
79 \( 1 - 3.92iT - 79T^{2} \)
83 \( 1 - 5.19T + 83T^{2} \)
89 \( 1 + 3.80iT - 89T^{2} \)
97 \( 1 + 8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.478725381417883425772747196160, −8.413996668302737145806694325773, −7.51924885595354749275959020052, −7.13276125225537578475590837934, −6.21719957552703635874923542516, −5.13870464228729663608012801838, −4.58802398679959866710061836122, −3.28590817834723512813050154802, −2.67201338497142055084619081595, −1.23032000481983733540545183292, 0.43631070961811189632071913433, 2.03031818208954932468058188193, 2.83995562186468823654378980564, 4.07932918198831638818367437533, 4.97232893074457751734717892370, 5.53847089177282888754189162777, 6.58163375634899606061836509029, 7.37471491380295744333542600270, 8.119946811515155234991151682870, 9.080122044530265463173610861053

Graph of the $Z$-function along the critical line