L(s) = 1 | + i·5-s − 1.26i·7-s − 1.26·11-s − 4.19·13-s − 5.19i·17-s + 6.46i·19-s + 7.73·23-s − 25-s + 2.19i·29-s + 6.46i·31-s + 1.26·35-s + 2·37-s + 8.19i·41-s + 11.6i·43-s − 2.53·47-s + ⋯ |
L(s) = 1 | + 0.447i·5-s − 0.479i·7-s − 0.382·11-s − 1.16·13-s − 1.26i·17-s + 1.48i·19-s + 1.61·23-s − 0.200·25-s + 0.407i·29-s + 1.16i·31-s + 0.214·35-s + 0.328·37-s + 1.28i·41-s + 1.77i·43-s − 0.369·47-s + ⋯ |
Λ(s)=(=(2160s/2ΓC(s)L(s)−iΛ(2−s)
Λ(s)=(=(2160s/2ΓC(s+1/2)L(s)−iΛ(1−s)
Degree: |
2 |
Conductor: |
2160
= 24⋅33⋅5
|
Sign: |
−i
|
Analytic conductor: |
17.2476 |
Root analytic conductor: |
4.15303 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2160(431,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2160, ( :1/2), −i)
|
Particular Values
L(1) |
≈ |
1.186757767 |
L(21) |
≈ |
1.186757767 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1−iT |
good | 7 | 1+1.26iT−7T2 |
| 11 | 1+1.26T+11T2 |
| 13 | 1+4.19T+13T2 |
| 17 | 1+5.19iT−17T2 |
| 19 | 1−6.46iT−19T2 |
| 23 | 1−7.73T+23T2 |
| 29 | 1−2.19iT−29T2 |
| 31 | 1−6.46iT−31T2 |
| 37 | 1−2T+37T2 |
| 41 | 1−8.19iT−41T2 |
| 43 | 1−11.6iT−43T2 |
| 47 | 1+2.53T+47T2 |
| 53 | 1+0.803iT−53T2 |
| 59 | 1+11.6T+59T2 |
| 61 | 1+T+61T2 |
| 67 | 1−10.3iT−67T2 |
| 71 | 1+1.26T+71T2 |
| 73 | 1−6.19T+73T2 |
| 79 | 1−3.92iT−79T2 |
| 83 | 1−5.19T+83T2 |
| 89 | 1+3.80iT−89T2 |
| 97 | 1+8T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.478725381417883425772747196160, −8.413996668302737145806694325773, −7.51924885595354749275959020052, −7.13276125225537578475590837934, −6.21719957552703635874923542516, −5.13870464228729663608012801838, −4.58802398679959866710061836122, −3.28590817834723512813050154802, −2.67201338497142055084619081595, −1.23032000481983733540545183292,
0.43631070961811189632071913433, 2.03031818208954932468058188193, 2.83995562186468823654378980564, 4.07932918198831638818367437533, 4.97232893074457751734717892370, 5.53847089177282888754189162777, 6.58163375634899606061836509029, 7.37471491380295744333542600270, 8.119946811515155234991151682870, 9.080122044530265463173610861053