L(s) = 1 | + i·5-s − 1.26i·7-s − 1.26·11-s − 4.19·13-s − 5.19i·17-s + 6.46i·19-s + 7.73·23-s − 25-s + 2.19i·29-s + 6.46i·31-s + 1.26·35-s + 2·37-s + 8.19i·41-s + 11.6i·43-s − 2.53·47-s + ⋯ |
L(s) = 1 | + 0.447i·5-s − 0.479i·7-s − 0.382·11-s − 1.16·13-s − 1.26i·17-s + 1.48i·19-s + 1.61·23-s − 0.200·25-s + 0.407i·29-s + 1.16i·31-s + 0.214·35-s + 0.328·37-s + 1.28i·41-s + 1.77i·43-s − 0.369·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.186757767\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.186757767\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 - iT \) |
good | 7 | \( 1 + 1.26iT - 7T^{2} \) |
| 11 | \( 1 + 1.26T + 11T^{2} \) |
| 13 | \( 1 + 4.19T + 13T^{2} \) |
| 17 | \( 1 + 5.19iT - 17T^{2} \) |
| 19 | \( 1 - 6.46iT - 19T^{2} \) |
| 23 | \( 1 - 7.73T + 23T^{2} \) |
| 29 | \( 1 - 2.19iT - 29T^{2} \) |
| 31 | \( 1 - 6.46iT - 31T^{2} \) |
| 37 | \( 1 - 2T + 37T^{2} \) |
| 41 | \( 1 - 8.19iT - 41T^{2} \) |
| 43 | \( 1 - 11.6iT - 43T^{2} \) |
| 47 | \( 1 + 2.53T + 47T^{2} \) |
| 53 | \( 1 + 0.803iT - 53T^{2} \) |
| 59 | \( 1 + 11.6T + 59T^{2} \) |
| 61 | \( 1 + T + 61T^{2} \) |
| 67 | \( 1 - 10.3iT - 67T^{2} \) |
| 71 | \( 1 + 1.26T + 71T^{2} \) |
| 73 | \( 1 - 6.19T + 73T^{2} \) |
| 79 | \( 1 - 3.92iT - 79T^{2} \) |
| 83 | \( 1 - 5.19T + 83T^{2} \) |
| 89 | \( 1 + 3.80iT - 89T^{2} \) |
| 97 | \( 1 + 8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.478725381417883425772747196160, −8.413996668302737145806694325773, −7.51924885595354749275959020052, −7.13276125225537578475590837934, −6.21719957552703635874923542516, −5.13870464228729663608012801838, −4.58802398679959866710061836122, −3.28590817834723512813050154802, −2.67201338497142055084619081595, −1.23032000481983733540545183292,
0.43631070961811189632071913433, 2.03031818208954932468058188193, 2.83995562186468823654378980564, 4.07932918198831638818367437533, 4.97232893074457751734717892370, 5.53847089177282888754189162777, 6.58163375634899606061836509029, 7.37471491380295744333542600270, 8.119946811515155234991151682870, 9.080122044530265463173610861053