L(s) = 1 | + (−0.5 − 0.866i)5-s + (0.133 − 0.232i)7-s + (0.732 − 1.26i)11-s + (2.73 + 4.73i)13-s − 0.535·17-s + 2·19-s + (−1.86 − 3.23i)23-s + (−0.499 + 0.866i)25-s + (0.767 − 1.33i)29-s + (−1 − 1.73i)31-s − 0.267·35-s + 10.3·37-s + (4.96 + 8.59i)41-s + (−2.26 + 3.92i)43-s + (−0.133 + 0.232i)47-s + ⋯ |
L(s) = 1 | + (−0.223 − 0.387i)5-s + (0.0506 − 0.0877i)7-s + (0.220 − 0.382i)11-s + (0.757 + 1.31i)13-s − 0.129·17-s + 0.458·19-s + (−0.389 − 0.673i)23-s + (−0.0999 + 0.173i)25-s + (0.142 − 0.246i)29-s + (−0.179 − 0.311i)31-s − 0.0452·35-s + 1.70·37-s + (0.775 + 1.34i)41-s + (−0.345 + 0.599i)43-s + (−0.0195 + 0.0338i)47-s + ⋯ |
Λ(s)=(=(2160s/2ΓC(s)L(s)(0.984+0.173i)Λ(2−s)
Λ(s)=(=(2160s/2ΓC(s+1/2)L(s)(0.984+0.173i)Λ(1−s)
Degree: |
2 |
Conductor: |
2160
= 24⋅33⋅5
|
Sign: |
0.984+0.173i
|
Analytic conductor: |
17.2476 |
Root analytic conductor: |
4.15303 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2160(721,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2160, ( :1/2), 0.984+0.173i)
|
Particular Values
L(1) |
≈ |
1.773790900 |
L(21) |
≈ |
1.773790900 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(0.5+0.866i)T |
good | 7 | 1+(−0.133+0.232i)T+(−3.5−6.06i)T2 |
| 11 | 1+(−0.732+1.26i)T+(−5.5−9.52i)T2 |
| 13 | 1+(−2.73−4.73i)T+(−6.5+11.2i)T2 |
| 17 | 1+0.535T+17T2 |
| 19 | 1−2T+19T2 |
| 23 | 1+(1.86+3.23i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−0.767+1.33i)T+(−14.5−25.1i)T2 |
| 31 | 1+(1+1.73i)T+(−15.5+26.8i)T2 |
| 37 | 1−10.3T+37T2 |
| 41 | 1+(−4.96−8.59i)T+(−20.5+35.5i)T2 |
| 43 | 1+(2.26−3.92i)T+(−21.5−37.2i)T2 |
| 47 | 1+(0.133−0.232i)T+(−23.5−40.7i)T2 |
| 53 | 1+6T+53T2 |
| 59 | 1+(7.19+12.4i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−4.23+7.33i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−3.13−5.42i)T+(−33.5+58.0i)T2 |
| 71 | 1−9.46T+71T2 |
| 73 | 1−6.92T+73T2 |
| 79 | 1+(−7.73+13.3i)T+(−39.5−68.4i)T2 |
| 83 | 1+(−6.59+11.4i)T+(−41.5−71.8i)T2 |
| 89 | 1−9.92T+89T2 |
| 97 | 1+(−4.46+7.73i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.249747887127768477532381543510, −8.178335393956246074485229823980, −7.72677965354023007688876812490, −6.43680580679924451104690349274, −6.19551012861373935479170853890, −4.85742516698642617113826521396, −4.25053322852681914746467729030, −3.33488503960487398422299693220, −2.06816402390783266582383411502, −0.891179820985886843111427235684,
0.907493022977264738873338658089, 2.30373378258580713665776380240, 3.33876197036055713726498017737, 4.05981116256698429181254831358, 5.24528185166705126556254737932, 5.88774781281098208727645206792, 6.80724067753730119773254501682, 7.62979002780030014816723831612, 8.193996777730695381301405319170, 9.120575416160271930426646438211