L(s) = 1 | + (−0.5 − 0.866i)5-s + (0.133 − 0.232i)7-s + (0.732 − 1.26i)11-s + (2.73 + 4.73i)13-s − 0.535·17-s + 2·19-s + (−1.86 − 3.23i)23-s + (−0.499 + 0.866i)25-s + (0.767 − 1.33i)29-s + (−1 − 1.73i)31-s − 0.267·35-s + 10.3·37-s + (4.96 + 8.59i)41-s + (−2.26 + 3.92i)43-s + (−0.133 + 0.232i)47-s + ⋯ |
L(s) = 1 | + (−0.223 − 0.387i)5-s + (0.0506 − 0.0877i)7-s + (0.220 − 0.382i)11-s + (0.757 + 1.31i)13-s − 0.129·17-s + 0.458·19-s + (−0.389 − 0.673i)23-s + (−0.0999 + 0.173i)25-s + (0.142 − 0.246i)29-s + (−0.179 − 0.311i)31-s − 0.0452·35-s + 1.70·37-s + (0.775 + 1.34i)41-s + (−0.345 + 0.599i)43-s + (−0.0195 + 0.0338i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 + 0.173i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.984 + 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.773790900\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.773790900\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
good | 7 | \( 1 + (-0.133 + 0.232i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.732 + 1.26i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.73 - 4.73i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 0.535T + 17T^{2} \) |
| 19 | \( 1 - 2T + 19T^{2} \) |
| 23 | \( 1 + (1.86 + 3.23i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.767 + 1.33i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1 + 1.73i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 10.3T + 37T^{2} \) |
| 41 | \( 1 + (-4.96 - 8.59i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2.26 - 3.92i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (0.133 - 0.232i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 6T + 53T^{2} \) |
| 59 | \( 1 + (7.19 + 12.4i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.23 + 7.33i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.13 - 5.42i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 9.46T + 71T^{2} \) |
| 73 | \( 1 - 6.92T + 73T^{2} \) |
| 79 | \( 1 + (-7.73 + 13.3i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-6.59 + 11.4i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 9.92T + 89T^{2} \) |
| 97 | \( 1 + (-4.46 + 7.73i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.249747887127768477532381543510, −8.178335393956246074485229823980, −7.72677965354023007688876812490, −6.43680580679924451104690349274, −6.19551012861373935479170853890, −4.85742516698642617113826521396, −4.25053322852681914746467729030, −3.33488503960487398422299693220, −2.06816402390783266582383411502, −0.891179820985886843111427235684,
0.907493022977264738873338658089, 2.30373378258580713665776380240, 3.33876197036055713726498017737, 4.05981116256698429181254831358, 5.24528185166705126556254737932, 5.88774781281098208727645206792, 6.80724067753730119773254501682, 7.62979002780030014816723831612, 8.193996777730695381301405319170, 9.120575416160271930426646438211