Properties

Label 2-2160-9.7-c1-0-13
Degree $2$
Conductor $2160$
Sign $0.984 + 0.173i$
Analytic cond. $17.2476$
Root an. cond. $4.15303$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 − 0.866i)5-s + (0.133 − 0.232i)7-s + (0.732 − 1.26i)11-s + (2.73 + 4.73i)13-s − 0.535·17-s + 2·19-s + (−1.86 − 3.23i)23-s + (−0.499 + 0.866i)25-s + (0.767 − 1.33i)29-s + (−1 − 1.73i)31-s − 0.267·35-s + 10.3·37-s + (4.96 + 8.59i)41-s + (−2.26 + 3.92i)43-s + (−0.133 + 0.232i)47-s + ⋯
L(s)  = 1  + (−0.223 − 0.387i)5-s + (0.0506 − 0.0877i)7-s + (0.220 − 0.382i)11-s + (0.757 + 1.31i)13-s − 0.129·17-s + 0.458·19-s + (−0.389 − 0.673i)23-s + (−0.0999 + 0.173i)25-s + (0.142 − 0.246i)29-s + (−0.179 − 0.311i)31-s − 0.0452·35-s + 1.70·37-s + (0.775 + 1.34i)41-s + (−0.345 + 0.599i)43-s + (−0.0195 + 0.0338i)47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 + 0.173i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.984 + 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2160\)    =    \(2^{4} \cdot 3^{3} \cdot 5\)
Sign: $0.984 + 0.173i$
Analytic conductor: \(17.2476\)
Root analytic conductor: \(4.15303\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2160} (721, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2160,\ (\ :1/2),\ 0.984 + 0.173i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.773790900\)
\(L(\frac12)\) \(\approx\) \(1.773790900\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (0.5 + 0.866i)T \)
good7 \( 1 + (-0.133 + 0.232i)T + (-3.5 - 6.06i)T^{2} \)
11 \( 1 + (-0.732 + 1.26i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + (-2.73 - 4.73i)T + (-6.5 + 11.2i)T^{2} \)
17 \( 1 + 0.535T + 17T^{2} \)
19 \( 1 - 2T + 19T^{2} \)
23 \( 1 + (1.86 + 3.23i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (-0.767 + 1.33i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 + (1 + 1.73i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 - 10.3T + 37T^{2} \)
41 \( 1 + (-4.96 - 8.59i)T + (-20.5 + 35.5i)T^{2} \)
43 \( 1 + (2.26 - 3.92i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (0.133 - 0.232i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + 6T + 53T^{2} \)
59 \( 1 + (7.19 + 12.4i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-4.23 + 7.33i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (-3.13 - 5.42i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 - 9.46T + 71T^{2} \)
73 \( 1 - 6.92T + 73T^{2} \)
79 \( 1 + (-7.73 + 13.3i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + (-6.59 + 11.4i)T + (-41.5 - 71.8i)T^{2} \)
89 \( 1 - 9.92T + 89T^{2} \)
97 \( 1 + (-4.46 + 7.73i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.249747887127768477532381543510, −8.178335393956246074485229823980, −7.72677965354023007688876812490, −6.43680580679924451104690349274, −6.19551012861373935479170853890, −4.85742516698642617113826521396, −4.25053322852681914746467729030, −3.33488503960487398422299693220, −2.06816402390783266582383411502, −0.891179820985886843111427235684, 0.907493022977264738873338658089, 2.30373378258580713665776380240, 3.33876197036055713726498017737, 4.05981116256698429181254831358, 5.24528185166705126556254737932, 5.88774781281098208727645206792, 6.80724067753730119773254501682, 7.62979002780030014816723831612, 8.193996777730695381301405319170, 9.120575416160271930426646438211

Graph of the $Z$-function along the critical line