L(s) = 1 | + (0.5 − 0.866i)5-s + (−0.596 − 1.03i)7-s + (1.66 + 2.87i)11-s + (−0.853 + 1.47i)13-s + 6.34·17-s − 1.32·19-s + (−3.43 + 5.94i)23-s + (−0.499 − 0.866i)25-s + (1.01 + 1.75i)29-s + (−1.33 + 2.32i)31-s − 1.19·35-s + 3.32·37-s + (1.16 − 2.00i)41-s + (−3.17 − 5.49i)43-s + (6.38 + 11.0i)47-s + ⋯ |
L(s) = 1 | + (0.223 − 0.387i)5-s + (−0.225 − 0.390i)7-s + (0.500 + 0.867i)11-s + (−0.236 + 0.410i)13-s + 1.53·17-s − 0.303·19-s + (−0.715 + 1.23i)23-s + (−0.0999 − 0.173i)25-s + (0.188 + 0.326i)29-s + (−0.240 + 0.416i)31-s − 0.201·35-s + 0.545·37-s + (0.181 − 0.313i)41-s + (−0.484 − 0.838i)43-s + (0.931 + 1.61i)47-s + ⋯ |
Λ(s)=(=(2160s/2ΓC(s)L(s)(0.894−0.446i)Λ(2−s)
Λ(s)=(=(2160s/2ΓC(s+1/2)L(s)(0.894−0.446i)Λ(1−s)
Degree: |
2 |
Conductor: |
2160
= 24⋅33⋅5
|
Sign: |
0.894−0.446i
|
Analytic conductor: |
17.2476 |
Root analytic conductor: |
4.15303 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2160(1441,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2160, ( :1/2), 0.894−0.446i)
|
Particular Values
L(1) |
≈ |
1.804106198 |
L(21) |
≈ |
1.804106198 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(−0.5+0.866i)T |
good | 7 | 1+(0.596+1.03i)T+(−3.5+6.06i)T2 |
| 11 | 1+(−1.66−2.87i)T+(−5.5+9.52i)T2 |
| 13 | 1+(0.853−1.47i)T+(−6.5−11.2i)T2 |
| 17 | 1−6.34T+17T2 |
| 19 | 1+1.32T+19T2 |
| 23 | 1+(3.43−5.94i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−1.01−1.75i)T+(−14.5+25.1i)T2 |
| 31 | 1+(1.33−2.32i)T+(−15.5−26.8i)T2 |
| 37 | 1−3.32T+37T2 |
| 41 | 1+(−1.16+2.00i)T+(−20.5−35.5i)T2 |
| 43 | 1+(3.17+5.49i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−6.38−11.0i)T+(−23.5+40.7i)T2 |
| 53 | 1+1.02T+53T2 |
| 59 | 1+(−5.83+10.1i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−4.86−8.43i)T+(−30.5+52.8i)T2 |
| 67 | 1+(5.28−9.15i)T+(−33.5−58.0i)T2 |
| 71 | 1+1.06T+71T2 |
| 73 | 1−14.0T+73T2 |
| 79 | 1+(−0.707−1.22i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−5.91−10.2i)T+(−41.5+71.8i)T2 |
| 89 | 1−11T+89T2 |
| 97 | 1+(8.12+14.0i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.320843709612336085956147481328, −8.343570058849893374614580990139, −7.49583828929467784791213665325, −6.93205835666550962214286167965, −5.90826058924332888787569673674, −5.18861596850756816903715249126, −4.20019809706648510434635423272, −3.47955835569987155601008952572, −2.12873781012565151515449908239, −1.11068714305320948140990563365,
0.75158739770917954857393052295, 2.24470797477688030304503988336, 3.14731909944910594752448432653, 3.97919805202957668542783210547, 5.17034359175742150023689524102, 6.00242661752902940476086637384, 6.44833052970008064469814507689, 7.58735438516967775393006688362, 8.211074092540366874411247155727, 9.021448909766739809031774972743