L(s) = 1 | + (0.5 − 0.866i)5-s + (−0.596 − 1.03i)7-s + (1.66 + 2.87i)11-s + (−0.853 + 1.47i)13-s + 6.34·17-s − 1.32·19-s + (−3.43 + 5.94i)23-s + (−0.499 − 0.866i)25-s + (1.01 + 1.75i)29-s + (−1.33 + 2.32i)31-s − 1.19·35-s + 3.32·37-s + (1.16 − 2.00i)41-s + (−3.17 − 5.49i)43-s + (6.38 + 11.0i)47-s + ⋯ |
L(s) = 1 | + (0.223 − 0.387i)5-s + (−0.225 − 0.390i)7-s + (0.500 + 0.867i)11-s + (−0.236 + 0.410i)13-s + 1.53·17-s − 0.303·19-s + (−0.715 + 1.23i)23-s + (−0.0999 − 0.173i)25-s + (0.188 + 0.326i)29-s + (−0.240 + 0.416i)31-s − 0.201·35-s + 0.545·37-s + (0.181 − 0.313i)41-s + (−0.484 − 0.838i)43-s + (0.931 + 1.61i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.446i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.894 - 0.446i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.804106198\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.804106198\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
good | 7 | \( 1 + (0.596 + 1.03i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.66 - 2.87i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (0.853 - 1.47i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 6.34T + 17T^{2} \) |
| 19 | \( 1 + 1.32T + 19T^{2} \) |
| 23 | \( 1 + (3.43 - 5.94i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.01 - 1.75i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (1.33 - 2.32i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 3.32T + 37T^{2} \) |
| 41 | \( 1 + (-1.16 + 2.00i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (3.17 + 5.49i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-6.38 - 11.0i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 1.02T + 53T^{2} \) |
| 59 | \( 1 + (-5.83 + 10.1i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.86 - 8.43i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (5.28 - 9.15i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 1.06T + 71T^{2} \) |
| 73 | \( 1 - 14.0T + 73T^{2} \) |
| 79 | \( 1 + (-0.707 - 1.22i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-5.91 - 10.2i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 11T + 89T^{2} \) |
| 97 | \( 1 + (8.12 + 14.0i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.320843709612336085956147481328, −8.343570058849893374614580990139, −7.49583828929467784791213665325, −6.93205835666550962214286167965, −5.90826058924332888787569673674, −5.18861596850756816903715249126, −4.20019809706648510434635423272, −3.47955835569987155601008952572, −2.12873781012565151515449908239, −1.11068714305320948140990563365,
0.75158739770917954857393052295, 2.24470797477688030304503988336, 3.14731909944910594752448432653, 3.97919805202957668542783210547, 5.17034359175742150023689524102, 6.00242661752902940476086637384, 6.44833052970008064469814507689, 7.58735438516967775393006688362, 8.211074092540366874411247155727, 9.021448909766739809031774972743