Properties

Label 2-2160-15.14-c2-0-66
Degree $2$
Conductor $2160$
Sign $0.599 + 0.799i$
Analytic cond. $58.8557$
Root an. cond. $7.67174$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (4 − 3i)5-s − 6i·7-s + 21i·11-s − 15i·13-s + 23·17-s − 14·19-s + 7·23-s + (7 − 24i)25-s − 3i·29-s + 25·31-s + (−18 − 24i)35-s + 54i·37-s − 24i·41-s − 15i·43-s + 49·47-s + ⋯
L(s)  = 1  + (0.800 − 0.600i)5-s − 0.857i·7-s + 1.90i·11-s − 1.15i·13-s + 1.35·17-s − 0.736·19-s + 0.304·23-s + (0.280 − 0.959i)25-s − 0.103i·29-s + 0.806·31-s + (−0.514 − 0.685i)35-s + 1.45i·37-s − 0.585i·41-s − 0.348i·43-s + 1.04·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.599 + 0.799i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.599 + 0.799i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2160\)    =    \(2^{4} \cdot 3^{3} \cdot 5\)
Sign: $0.599 + 0.799i$
Analytic conductor: \(58.8557\)
Root analytic conductor: \(7.67174\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{2160} (1889, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2160,\ (\ :1),\ 0.599 + 0.799i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.531209806\)
\(L(\frac12)\) \(\approx\) \(2.531209806\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (-4 + 3i)T \)
good7 \( 1 + 6iT - 49T^{2} \)
11 \( 1 - 21iT - 121T^{2} \)
13 \( 1 + 15iT - 169T^{2} \)
17 \( 1 - 23T + 289T^{2} \)
19 \( 1 + 14T + 361T^{2} \)
23 \( 1 - 7T + 529T^{2} \)
29 \( 1 + 3iT - 841T^{2} \)
31 \( 1 - 25T + 961T^{2} \)
37 \( 1 - 54iT - 1.36e3T^{2} \)
41 \( 1 + 24iT - 1.68e3T^{2} \)
43 \( 1 + 15iT - 1.84e3T^{2} \)
47 \( 1 - 49T + 2.20e3T^{2} \)
53 \( 1 - 14T + 2.80e3T^{2} \)
59 \( 1 + 30iT - 3.48e3T^{2} \)
61 \( 1 - 44T + 3.72e3T^{2} \)
67 \( 1 + 66iT - 4.48e3T^{2} \)
71 \( 1 - 18iT - 5.04e3T^{2} \)
73 \( 1 - 5.32e3T^{2} \)
79 \( 1 - 37T + 6.24e3T^{2} \)
83 \( 1 + 116T + 6.88e3T^{2} \)
89 \( 1 + 126iT - 7.92e3T^{2} \)
97 \( 1 - 78iT - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.788992994663698616355236674522, −7.930803258645152067740069378333, −7.29470958958619771238313617964, −6.46575682133373419199520583446, −5.47543344023529242908169832353, −4.81434126231532467440711517544, −4.02181385679837111083763660890, −2.78015530362325746881189242271, −1.70433687238204907052358108119, −0.73857156632404016968590844807, 1.03800421838750038478354674208, 2.28922265167572238473264429065, 3.03131882103692379178825404630, 3.97941813767163814965820891214, 5.35126404017434479731769543747, 5.88107980852728526465272388992, 6.44355303341868154947900732554, 7.40643734124517462809278039862, 8.481322111909778583747951604464, 8.928788149191546541089377415239

Graph of the $Z$-function along the critical line