L(s) = 1 | + (4 − 3i)5-s − 6i·7-s + 21i·11-s − 15i·13-s + 23·17-s − 14·19-s + 7·23-s + (7 − 24i)25-s − 3i·29-s + 25·31-s + (−18 − 24i)35-s + 54i·37-s − 24i·41-s − 15i·43-s + 49·47-s + ⋯ |
L(s) = 1 | + (0.800 − 0.600i)5-s − 0.857i·7-s + 1.90i·11-s − 1.15i·13-s + 1.35·17-s − 0.736·19-s + 0.304·23-s + (0.280 − 0.959i)25-s − 0.103i·29-s + 0.806·31-s + (−0.514 − 0.685i)35-s + 1.45i·37-s − 0.585i·41-s − 0.348i·43-s + 1.04·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.599 + 0.799i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.599 + 0.799i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.531209806\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.531209806\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-4 + 3i)T \) |
good | 7 | \( 1 + 6iT - 49T^{2} \) |
| 11 | \( 1 - 21iT - 121T^{2} \) |
| 13 | \( 1 + 15iT - 169T^{2} \) |
| 17 | \( 1 - 23T + 289T^{2} \) |
| 19 | \( 1 + 14T + 361T^{2} \) |
| 23 | \( 1 - 7T + 529T^{2} \) |
| 29 | \( 1 + 3iT - 841T^{2} \) |
| 31 | \( 1 - 25T + 961T^{2} \) |
| 37 | \( 1 - 54iT - 1.36e3T^{2} \) |
| 41 | \( 1 + 24iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 15iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 49T + 2.20e3T^{2} \) |
| 53 | \( 1 - 14T + 2.80e3T^{2} \) |
| 59 | \( 1 + 30iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 44T + 3.72e3T^{2} \) |
| 67 | \( 1 + 66iT - 4.48e3T^{2} \) |
| 71 | \( 1 - 18iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 5.32e3T^{2} \) |
| 79 | \( 1 - 37T + 6.24e3T^{2} \) |
| 83 | \( 1 + 116T + 6.88e3T^{2} \) |
| 89 | \( 1 + 126iT - 7.92e3T^{2} \) |
| 97 | \( 1 - 78iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.788992994663698616355236674522, −7.930803258645152067740069378333, −7.29470958958619771238313617964, −6.46575682133373419199520583446, −5.47543344023529242908169832353, −4.81434126231532467440711517544, −4.02181385679837111083763660890, −2.78015530362325746881189242271, −1.70433687238204907052358108119, −0.73857156632404016968590844807,
1.03800421838750038478354674208, 2.28922265167572238473264429065, 3.03131882103692379178825404630, 3.97941813767163814965820891214, 5.35126404017434479731769543747, 5.88107980852728526465272388992, 6.44355303341868154947900732554, 7.40643734124517462809278039862, 8.481322111909778583747951604464, 8.928788149191546541089377415239