L(s) = 1 | + (4 − 3i)5-s − 6i·7-s + 21i·11-s − 15i·13-s + 23·17-s − 14·19-s + 7·23-s + (7 − 24i)25-s − 3i·29-s + 25·31-s + (−18 − 24i)35-s + 54i·37-s − 24i·41-s − 15i·43-s + 49·47-s + ⋯ |
L(s) = 1 | + (0.800 − 0.600i)5-s − 0.857i·7-s + 1.90i·11-s − 1.15i·13-s + 1.35·17-s − 0.736·19-s + 0.304·23-s + (0.280 − 0.959i)25-s − 0.103i·29-s + 0.806·31-s + (−0.514 − 0.685i)35-s + 1.45i·37-s − 0.585i·41-s − 0.348i·43-s + 1.04·47-s + ⋯ |
Λ(s)=(=(2160s/2ΓC(s)L(s)(0.599+0.799i)Λ(3−s)
Λ(s)=(=(2160s/2ΓC(s+1)L(s)(0.599+0.799i)Λ(1−s)
Degree: |
2 |
Conductor: |
2160
= 24⋅33⋅5
|
Sign: |
0.599+0.799i
|
Analytic conductor: |
58.8557 |
Root analytic conductor: |
7.67174 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2160(1889,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2160, ( :1), 0.599+0.799i)
|
Particular Values
L(23) |
≈ |
2.531209806 |
L(21) |
≈ |
2.531209806 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(−4+3i)T |
good | 7 | 1+6iT−49T2 |
| 11 | 1−21iT−121T2 |
| 13 | 1+15iT−169T2 |
| 17 | 1−23T+289T2 |
| 19 | 1+14T+361T2 |
| 23 | 1−7T+529T2 |
| 29 | 1+3iT−841T2 |
| 31 | 1−25T+961T2 |
| 37 | 1−54iT−1.36e3T2 |
| 41 | 1+24iT−1.68e3T2 |
| 43 | 1+15iT−1.84e3T2 |
| 47 | 1−49T+2.20e3T2 |
| 53 | 1−14T+2.80e3T2 |
| 59 | 1+30iT−3.48e3T2 |
| 61 | 1−44T+3.72e3T2 |
| 67 | 1+66iT−4.48e3T2 |
| 71 | 1−18iT−5.04e3T2 |
| 73 | 1−5.32e3T2 |
| 79 | 1−37T+6.24e3T2 |
| 83 | 1+116T+6.88e3T2 |
| 89 | 1+126iT−7.92e3T2 |
| 97 | 1−78iT−9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.788992994663698616355236674522, −7.930803258645152067740069378333, −7.29470958958619771238313617964, −6.46575682133373419199520583446, −5.47543344023529242908169832353, −4.81434126231532467440711517544, −4.02181385679837111083763660890, −2.78015530362325746881189242271, −1.70433687238204907052358108119, −0.73857156632404016968590844807,
1.03800421838750038478354674208, 2.28922265167572238473264429065, 3.03131882103692379178825404630, 3.97941813767163814965820891214, 5.35126404017434479731769543747, 5.88107980852728526465272388992, 6.44355303341868154947900732554, 7.40643734124517462809278039862, 8.481322111909778583747951604464, 8.928788149191546541089377415239