L(s) = 1 | + (3.53 − 3.53i)5-s + 5i·7-s − 1.41i·11-s − 9i·13-s − 11.3·17-s − 21·19-s + 1.41·23-s − 25.0i·25-s + 38.1i·29-s − 40·31-s + (17.6 + 17.6i)35-s + 25i·37-s + 52.3i·41-s + 64i·43-s + 22.6·47-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)5-s + 0.714i·7-s − 0.128i·11-s − 0.692i·13-s − 0.665·17-s − 1.10·19-s + 0.0614·23-s − 1.00i·25-s + 1.31i·29-s − 1.29·31-s + (0.505 + 0.505i)35-s + 0.675i·37-s + 1.27i·41-s + 1.48i·43-s + 0.481·47-s + ⋯ |
Λ(s)=(=(2160s/2ΓC(s)L(s)(−0.707−0.707i)Λ(3−s)
Λ(s)=(=(2160s/2ΓC(s+1)L(s)(−0.707−0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
2160
= 24⋅33⋅5
|
Sign: |
−0.707−0.707i
|
Analytic conductor: |
58.8557 |
Root analytic conductor: |
7.67174 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2160(1889,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2160, ( :1), −0.707−0.707i)
|
Particular Values
L(23) |
≈ |
0.5954977003 |
L(21) |
≈ |
0.5954977003 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(−3.53+3.53i)T |
good | 7 | 1−5iT−49T2 |
| 11 | 1+1.41iT−121T2 |
| 13 | 1+9iT−169T2 |
| 17 | 1+11.3T+289T2 |
| 19 | 1+21T+361T2 |
| 23 | 1−1.41T+529T2 |
| 29 | 1−38.1iT−841T2 |
| 31 | 1+40T+961T2 |
| 37 | 1−25iT−1.36e3T2 |
| 41 | 1−52.3iT−1.68e3T2 |
| 43 | 1−64iT−1.84e3T2 |
| 47 | 1−22.6T+2.20e3T2 |
| 53 | 1+72.1T+2.80e3T2 |
| 59 | 1+90.5iT−3.48e3T2 |
| 61 | 1+97T+3.72e3T2 |
| 67 | 1+131iT−4.48e3T2 |
| 71 | 1−89.0iT−5.04e3T2 |
| 73 | 1−17iT−5.32e3T2 |
| 79 | 1−117T+6.24e3T2 |
| 83 | 1+57.9T+6.88e3T2 |
| 89 | 1−147.iT−7.92e3T2 |
| 97 | 1−41iT−9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.176410235074926734081731739691, −8.499458238294057053171123929856, −7.86074355653614687308563263222, −6.60076542143041766899026620553, −6.06068095944580790446690847324, −5.17080828204824696250574661241, −4.58682408313203652006964305614, −3.28914110157508641836244195694, −2.29652701738692474314126576570, −1.35324049645282745087552969738,
0.13508166798981376824091877532, 1.76894622033294934605330827258, 2.46469806440888987275187681810, 3.77160875468792456922303715010, 4.38001022824450552800813770398, 5.58456596733105015064515099083, 6.30668597144511230388065753821, 7.06496771434930337393498562400, 7.57683409115659473416068047037, 8.852388189139691522678511801231