L(s) = 1 | + (1.58 + 4.74i)5-s − 3i·7-s + 9.48i·11-s − 21i·13-s + 12.6·17-s + 31·19-s − 22.1·23-s + (−20 + 15.0i)25-s + 47.4i·29-s + 16·31-s + (14.2 − 4.74i)35-s − 27i·37-s − 47.4i·41-s − 48i·43-s − 12.6·47-s + ⋯ |
L(s) = 1 | + (0.316 + 0.948i)5-s − 0.428i·7-s + 0.862i·11-s − 1.61i·13-s + 0.744·17-s + 1.63·19-s − 0.962·23-s + (−0.800 + 0.600i)25-s + 1.63i·29-s + 0.516·31-s + (0.406 − 0.135i)35-s − 0.729i·37-s − 1.15i·41-s − 1.11i·43-s − 0.269·47-s + ⋯ |
Λ(s)=(=(2160s/2ΓC(s)L(s)(0.948−0.316i)Λ(3−s)
Λ(s)=(=(2160s/2ΓC(s+1)L(s)(0.948−0.316i)Λ(1−s)
Degree: |
2 |
Conductor: |
2160
= 24⋅33⋅5
|
Sign: |
0.948−0.316i
|
Analytic conductor: |
58.8557 |
Root analytic conductor: |
7.67174 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2160(1889,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2160, ( :1), 0.948−0.316i)
|
Particular Values
L(23) |
≈ |
2.303868719 |
L(21) |
≈ |
2.303868719 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(−1.58−4.74i)T |
good | 7 | 1+3iT−49T2 |
| 11 | 1−9.48iT−121T2 |
| 13 | 1+21iT−169T2 |
| 17 | 1−12.6T+289T2 |
| 19 | 1−31T+361T2 |
| 23 | 1+22.1T+529T2 |
| 29 | 1−47.4iT−841T2 |
| 31 | 1−16T+961T2 |
| 37 | 1+27iT−1.36e3T2 |
| 41 | 1+47.4iT−1.68e3T2 |
| 43 | 1+48iT−1.84e3T2 |
| 47 | 1+12.6T+2.20e3T2 |
| 53 | 1−41.1T+2.80e3T2 |
| 59 | 1+37.9iT−3.48e3T2 |
| 61 | 1+T+3.72e3T2 |
| 67 | 1−21iT−4.48e3T2 |
| 71 | 1+28.4iT−5.04e3T2 |
| 73 | 1+27iT−5.32e3T2 |
| 79 | 1−T+6.24e3T2 |
| 83 | 1−110.T+6.88e3T2 |
| 89 | 1−113.iT−7.92e3T2 |
| 97 | 1−93iT−9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.049813919030524521190816555744, −7.82071360774168413335366973157, −7.47455106581811435814665213821, −6.74216277398793443786523585711, −5.61462112950724982786437976544, −5.21606256385350892610978870699, −3.75819838196827559920334672383, −3.18242905278834579060466774321, −2.12437926927513239643605328073, −0.822736455912634815373562912243,
0.817008663883462826980026789393, 1.78980819500163831422210000937, 2.94895449791701500892313100055, 4.08253635947917157952260224222, 4.83036610195798083841593859173, 5.81473184084430859636675450310, 6.21438062759510482786683276719, 7.44431693313266553502896762038, 8.215187764869712416736522598729, 8.829304674493896433473650371771