Properties

Label 2-2160-15.14-c2-0-52
Degree 22
Conductor 21602160
Sign 0.9480.316i0.948 - 0.316i
Analytic cond. 58.855758.8557
Root an. cond. 7.671747.67174
Motivic weight 22
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.58 + 4.74i)5-s − 3i·7-s + 9.48i·11-s − 21i·13-s + 12.6·17-s + 31·19-s − 22.1·23-s + (−20 + 15.0i)25-s + 47.4i·29-s + 16·31-s + (14.2 − 4.74i)35-s − 27i·37-s − 47.4i·41-s − 48i·43-s − 12.6·47-s + ⋯
L(s)  = 1  + (0.316 + 0.948i)5-s − 0.428i·7-s + 0.862i·11-s − 1.61i·13-s + 0.744·17-s + 1.63·19-s − 0.962·23-s + (−0.800 + 0.600i)25-s + 1.63i·29-s + 0.516·31-s + (0.406 − 0.135i)35-s − 0.729i·37-s − 1.15i·41-s − 1.11i·43-s − 0.269·47-s + ⋯

Functional equation

Λ(s)=(2160s/2ΓC(s)L(s)=((0.9480.316i)Λ(3s)\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.948 - 0.316i)\, \overline{\Lambda}(3-s) \end{aligned}
Λ(s)=(2160s/2ΓC(s+1)L(s)=((0.9480.316i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.948 - 0.316i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 21602160    =    243352^{4} \cdot 3^{3} \cdot 5
Sign: 0.9480.316i0.948 - 0.316i
Analytic conductor: 58.855758.8557
Root analytic conductor: 7.671747.67174
Motivic weight: 22
Rational: no
Arithmetic: yes
Character: χ2160(1889,)\chi_{2160} (1889, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 2160, ( :1), 0.9480.316i)(2,\ 2160,\ (\ :1),\ 0.948 - 0.316i)

Particular Values

L(32)L(\frac{3}{2}) \approx 2.3038687192.303868719
L(12)L(\frac12) \approx 2.3038687192.303868719
L(2)L(2) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
5 1+(1.584.74i)T 1 + (-1.58 - 4.74i)T
good7 1+3iT49T2 1 + 3iT - 49T^{2}
11 19.48iT121T2 1 - 9.48iT - 121T^{2}
13 1+21iT169T2 1 + 21iT - 169T^{2}
17 112.6T+289T2 1 - 12.6T + 289T^{2}
19 131T+361T2 1 - 31T + 361T^{2}
23 1+22.1T+529T2 1 + 22.1T + 529T^{2}
29 147.4iT841T2 1 - 47.4iT - 841T^{2}
31 116T+961T2 1 - 16T + 961T^{2}
37 1+27iT1.36e3T2 1 + 27iT - 1.36e3T^{2}
41 1+47.4iT1.68e3T2 1 + 47.4iT - 1.68e3T^{2}
43 1+48iT1.84e3T2 1 + 48iT - 1.84e3T^{2}
47 1+12.6T+2.20e3T2 1 + 12.6T + 2.20e3T^{2}
53 141.1T+2.80e3T2 1 - 41.1T + 2.80e3T^{2}
59 1+37.9iT3.48e3T2 1 + 37.9iT - 3.48e3T^{2}
61 1+T+3.72e3T2 1 + T + 3.72e3T^{2}
67 121iT4.48e3T2 1 - 21iT - 4.48e3T^{2}
71 1+28.4iT5.04e3T2 1 + 28.4iT - 5.04e3T^{2}
73 1+27iT5.32e3T2 1 + 27iT - 5.32e3T^{2}
79 1T+6.24e3T2 1 - T + 6.24e3T^{2}
83 1110.T+6.88e3T2 1 - 110.T + 6.88e3T^{2}
89 1113.iT7.92e3T2 1 - 113. iT - 7.92e3T^{2}
97 193iT9.40e3T2 1 - 93iT - 9.40e3T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.049813919030524521190816555744, −7.82071360774168413335366973157, −7.47455106581811435814665213821, −6.74216277398793443786523585711, −5.61462112950724982786437976544, −5.21606256385350892610978870699, −3.75819838196827559920334672383, −3.18242905278834579060466774321, −2.12437926927513239643605328073, −0.822736455912634815373562912243, 0.817008663883462826980026789393, 1.78980819500163831422210000937, 2.94895449791701500892313100055, 4.08253635947917157952260224222, 4.83036610195798083841593859173, 5.81473184084430859636675450310, 6.21438062759510482786683276719, 7.44431693313266553502896762038, 8.215187764869712416736522598729, 8.829304674493896433473650371771

Graph of the ZZ-function along the critical line