L(s) = 1 | + (4.41 + 2.34i)5-s + 13.6i·7-s + 12.3i·11-s + 17.0i·13-s + 6.89·17-s + 7.24·19-s − 34.7·23-s + (13.9 + 20.7i)25-s + 21.1i·29-s + 38.2·31-s + (−32.1 + 60.4i)35-s + 21.5i·37-s − 36.3i·41-s + 6.23i·43-s + 40.2·47-s + ⋯ |
L(s) = 1 | + (0.882 + 0.469i)5-s + 1.95i·7-s + 1.11i·11-s + 1.30i·13-s + 0.405·17-s + 0.381·19-s − 1.51·23-s + (0.558 + 0.829i)25-s + 0.728i·29-s + 1.23·31-s + (−0.918 + 1.72i)35-s + 0.582i·37-s − 0.886i·41-s + 0.145i·43-s + 0.855·47-s + ⋯ |
Λ(s)=(=(2160s/2ΓC(s)L(s)(−0.882−0.469i)Λ(3−s)
Λ(s)=(=(2160s/2ΓC(s+1)L(s)(−0.882−0.469i)Λ(1−s)
Degree: |
2 |
Conductor: |
2160
= 24⋅33⋅5
|
Sign: |
−0.882−0.469i
|
Analytic conductor: |
58.8557 |
Root analytic conductor: |
7.67174 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2160(1889,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2160, ( :1), −0.882−0.469i)
|
Particular Values
L(23) |
≈ |
2.293775360 |
L(21) |
≈ |
2.293775360 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(−4.41−2.34i)T |
good | 7 | 1−13.6iT−49T2 |
| 11 | 1−12.3iT−121T2 |
| 13 | 1−17.0iT−169T2 |
| 17 | 1−6.89T+289T2 |
| 19 | 1−7.24T+361T2 |
| 23 | 1+34.7T+529T2 |
| 29 | 1−21.1iT−841T2 |
| 31 | 1−38.2T+961T2 |
| 37 | 1−21.5iT−1.36e3T2 |
| 41 | 1+36.3iT−1.68e3T2 |
| 43 | 1−6.23iT−1.84e3T2 |
| 47 | 1−40.2T+2.20e3T2 |
| 53 | 1−38.2T+2.80e3T2 |
| 59 | 1+41.6iT−3.48e3T2 |
| 61 | 1+15.0T+3.72e3T2 |
| 67 | 1+128.iT−4.48e3T2 |
| 71 | 1+104.iT−5.04e3T2 |
| 73 | 1+2.11iT−5.32e3T2 |
| 79 | 1−44.0T+6.24e3T2 |
| 83 | 1−55.0T+6.88e3T2 |
| 89 | 1+68.1iT−7.92e3T2 |
| 97 | 1+101.iT−9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.341688212872702453552199754202, −8.644125814061792401887423500300, −7.67562160207044368056407520325, −6.64603555963723480953343314814, −6.13774839589161563946079705719, −5.34042217646076370073087765278, −4.57551437668375885572538932097, −3.21804391508206378893349653582, −2.16910751017547926740051878067, −1.83984433107337903705633117549,
0.60640116098853111664703144823, 1.12527015810996137296118657494, 2.65947114816755415314769083109, 3.68859255214530588927471863901, 4.42531783591077676190979215805, 5.54322390408332456167204892481, 6.06246853741933668715394170756, 7.03867285917107634325300166543, 7.962572506284074932328621006035, 8.314417041526402608140150653485