Properties

Label 2-2160-15.14-c2-0-14
Degree $2$
Conductor $2160$
Sign $-0.938 + 0.344i$
Analytic cond. $58.8557$
Root an. cond. $7.67174$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.72 + 4.69i)5-s + 13.6i·7-s − 1.59i·11-s − 17.2i·13-s − 21.0·17-s − 11.6·19-s + 24.4·23-s + (−19.0 + 16.1i)25-s + 40.5i·29-s + 38.6·31-s + (−63.9 + 23.4i)35-s + 32.5i·37-s − 5.41i·41-s + 15.7i·43-s − 32.8·47-s + ⋯
L(s)  = 1  + (0.344 + 0.938i)5-s + 1.94i·7-s − 0.145i·11-s − 1.32i·13-s − 1.24·17-s − 0.615·19-s + 1.06·23-s + (−0.763 + 0.646i)25-s + 1.39i·29-s + 1.24·31-s + (−1.82 + 0.669i)35-s + 0.878i·37-s − 0.132i·41-s + 0.366i·43-s − 0.699·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.938 + 0.344i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.938 + 0.344i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2160\)    =    \(2^{4} \cdot 3^{3} \cdot 5\)
Sign: $-0.938 + 0.344i$
Analytic conductor: \(58.8557\)
Root analytic conductor: \(7.67174\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{2160} (1889, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2160,\ (\ :1),\ -0.938 + 0.344i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.8970127424\)
\(L(\frac12)\) \(\approx\) \(0.8970127424\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (-1.72 - 4.69i)T \)
good7 \( 1 - 13.6iT - 49T^{2} \)
11 \( 1 + 1.59iT - 121T^{2} \)
13 \( 1 + 17.2iT - 169T^{2} \)
17 \( 1 + 21.0T + 289T^{2} \)
19 \( 1 + 11.6T + 361T^{2} \)
23 \( 1 - 24.4T + 529T^{2} \)
29 \( 1 - 40.5iT - 841T^{2} \)
31 \( 1 - 38.6T + 961T^{2} \)
37 \( 1 - 32.5iT - 1.36e3T^{2} \)
41 \( 1 + 5.41iT - 1.68e3T^{2} \)
43 \( 1 - 15.7iT - 1.84e3T^{2} \)
47 \( 1 + 32.8T + 2.20e3T^{2} \)
53 \( 1 + 97.5T + 2.80e3T^{2} \)
59 \( 1 - 88.1iT - 3.48e3T^{2} \)
61 \( 1 - 9.07T + 3.72e3T^{2} \)
67 \( 1 - 26.8iT - 4.48e3T^{2} \)
71 \( 1 + 109. iT - 5.04e3T^{2} \)
73 \( 1 - 29.0iT - 5.32e3T^{2} \)
79 \( 1 - 18.3T + 6.24e3T^{2} \)
83 \( 1 - 23.3T + 6.88e3T^{2} \)
89 \( 1 + 147. iT - 7.92e3T^{2} \)
97 \( 1 + 100. iT - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.188855053650386917443128429552, −8.637464845452145050076050810591, −7.920278646650604340860208182277, −6.73782930433166524889037215054, −6.23885404797119453082454120520, −5.45927499812976104113171371489, −4.71886769812606290526577530013, −2.99213926233855199102116318820, −2.88129624976147687425269647416, −1.72124426408465343531404646503, 0.21771617033843884307215372333, 1.23613496872309019393755888201, 2.23898273341210482037387059605, 3.83816392420179023034218063001, 4.41624612295896372386217563813, 4.91676880651828804844616861613, 6.46404905683351356913554260992, 6.69621638300269335875447824162, 7.74588954598707374575834267513, 8.430950185498737223992945286378

Graph of the $Z$-function along the critical line