L(s) = 1 | + (1.72 + 4.69i)5-s + 13.6i·7-s − 1.59i·11-s − 17.2i·13-s − 21.0·17-s − 11.6·19-s + 24.4·23-s + (−19.0 + 16.1i)25-s + 40.5i·29-s + 38.6·31-s + (−63.9 + 23.4i)35-s + 32.5i·37-s − 5.41i·41-s + 15.7i·43-s − 32.8·47-s + ⋯ |
L(s) = 1 | + (0.344 + 0.938i)5-s + 1.94i·7-s − 0.145i·11-s − 1.32i·13-s − 1.24·17-s − 0.615·19-s + 1.06·23-s + (−0.763 + 0.646i)25-s + 1.39i·29-s + 1.24·31-s + (−1.82 + 0.669i)35-s + 0.878i·37-s − 0.132i·41-s + 0.366i·43-s − 0.699·47-s + ⋯ |
Λ(s)=(=(2160s/2ΓC(s)L(s)(−0.938+0.344i)Λ(3−s)
Λ(s)=(=(2160s/2ΓC(s+1)L(s)(−0.938+0.344i)Λ(1−s)
Degree: |
2 |
Conductor: |
2160
= 24⋅33⋅5
|
Sign: |
−0.938+0.344i
|
Analytic conductor: |
58.8557 |
Root analytic conductor: |
7.67174 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2160(1889,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2160, ( :1), −0.938+0.344i)
|
Particular Values
L(23) |
≈ |
0.8970127424 |
L(21) |
≈ |
0.8970127424 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(−1.72−4.69i)T |
good | 7 | 1−13.6iT−49T2 |
| 11 | 1+1.59iT−121T2 |
| 13 | 1+17.2iT−169T2 |
| 17 | 1+21.0T+289T2 |
| 19 | 1+11.6T+361T2 |
| 23 | 1−24.4T+529T2 |
| 29 | 1−40.5iT−841T2 |
| 31 | 1−38.6T+961T2 |
| 37 | 1−32.5iT−1.36e3T2 |
| 41 | 1+5.41iT−1.68e3T2 |
| 43 | 1−15.7iT−1.84e3T2 |
| 47 | 1+32.8T+2.20e3T2 |
| 53 | 1+97.5T+2.80e3T2 |
| 59 | 1−88.1iT−3.48e3T2 |
| 61 | 1−9.07T+3.72e3T2 |
| 67 | 1−26.8iT−4.48e3T2 |
| 71 | 1+109.iT−5.04e3T2 |
| 73 | 1−29.0iT−5.32e3T2 |
| 79 | 1−18.3T+6.24e3T2 |
| 83 | 1−23.3T+6.88e3T2 |
| 89 | 1+147.iT−7.92e3T2 |
| 97 | 1+100.iT−9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.188855053650386917443128429552, −8.637464845452145050076050810591, −7.920278646650604340860208182277, −6.73782930433166524889037215054, −6.23885404797119453082454120520, −5.45927499812976104113171371489, −4.71886769812606290526577530013, −2.99213926233855199102116318820, −2.88129624976147687425269647416, −1.72124426408465343531404646503,
0.21771617033843884307215372333, 1.23613496872309019393755888201, 2.23898273341210482037387059605, 3.83816392420179023034218063001, 4.41624612295896372386217563813, 4.91676880651828804844616861613, 6.46404905683351356913554260992, 6.69621638300269335875447824162, 7.74588954598707374575834267513, 8.430950185498737223992945286378