Properties

Label 2-2160-15.14-c2-0-70
Degree $2$
Conductor $2160$
Sign $0.425 + 0.905i$
Analytic cond. $58.8557$
Root an. cond. $7.67174$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (4.52 − 2.12i)5-s − 0.343i·7-s + 3.68i·11-s − 5.50i·13-s + 6.36·17-s + 2.62·19-s − 12.2·23-s + (15.9 − 19.2i)25-s − 24.0i·29-s + 1.04·31-s + (−0.729 − 1.55i)35-s − 36.2i·37-s + 8.06i·41-s + 19.3i·43-s + 38.7·47-s + ⋯
L(s)  = 1  + (0.905 − 0.425i)5-s − 0.0490i·7-s + 0.334i·11-s − 0.423i·13-s + 0.374·17-s + 0.138·19-s − 0.533·23-s + (0.638 − 0.769i)25-s − 0.828i·29-s + 0.0337·31-s + (−0.0208 − 0.0443i)35-s − 0.979i·37-s + 0.196i·41-s + 0.449i·43-s + 0.824·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.425 + 0.905i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.425 + 0.905i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2160\)    =    \(2^{4} \cdot 3^{3} \cdot 5\)
Sign: $0.425 + 0.905i$
Analytic conductor: \(58.8557\)
Root analytic conductor: \(7.67174\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{2160} (1889, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2160,\ (\ :1),\ 0.425 + 0.905i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.339662592\)
\(L(\frac12)\) \(\approx\) \(2.339662592\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (-4.52 + 2.12i)T \)
good7 \( 1 + 0.343iT - 49T^{2} \)
11 \( 1 - 3.68iT - 121T^{2} \)
13 \( 1 + 5.50iT - 169T^{2} \)
17 \( 1 - 6.36T + 289T^{2} \)
19 \( 1 - 2.62T + 361T^{2} \)
23 \( 1 + 12.2T + 529T^{2} \)
29 \( 1 + 24.0iT - 841T^{2} \)
31 \( 1 - 1.04T + 961T^{2} \)
37 \( 1 + 36.2iT - 1.36e3T^{2} \)
41 \( 1 - 8.06iT - 1.68e3T^{2} \)
43 \( 1 - 19.3iT - 1.84e3T^{2} \)
47 \( 1 - 38.7T + 2.20e3T^{2} \)
53 \( 1 - 3.24T + 2.80e3T^{2} \)
59 \( 1 + 51.5iT - 3.48e3T^{2} \)
61 \( 1 - 28.7T + 3.72e3T^{2} \)
67 \( 1 - 77.8iT - 4.48e3T^{2} \)
71 \( 1 + 87.5iT - 5.04e3T^{2} \)
73 \( 1 + 108. iT - 5.32e3T^{2} \)
79 \( 1 + 78.1T + 6.24e3T^{2} \)
83 \( 1 - 62.1T + 6.88e3T^{2} \)
89 \( 1 + 35.2iT - 7.92e3T^{2} \)
97 \( 1 + 65.0iT - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.849519825282976006781134323337, −7.996194158688117391799364227753, −7.25514227567987444353365206764, −6.21792264960395147356071660227, −5.65691641120240140700293742054, −4.81939800031024998323921807132, −3.89665815126146577486180656671, −2.69657455309781269778047474724, −1.80147428834616529069564419399, −0.62059141102165334455613256438, 1.12940376088264433790456759508, 2.20327428346451379633958785336, 3.10659549353048020388584107784, 4.10939583642853321779679211717, 5.25119821181268042392866551484, 5.84338736633590291479134862546, 6.69513488283933821665759503446, 7.33429523527432624177834362891, 8.387772240300479727383083834653, 9.058661210836890141999244815746

Graph of the $Z$-function along the critical line