L(s) = 1 | + (4.52 − 2.12i)5-s − 0.343i·7-s + 3.68i·11-s − 5.50i·13-s + 6.36·17-s + 2.62·19-s − 12.2·23-s + (15.9 − 19.2i)25-s − 24.0i·29-s + 1.04·31-s + (−0.729 − 1.55i)35-s − 36.2i·37-s + 8.06i·41-s + 19.3i·43-s + 38.7·47-s + ⋯ |
L(s) = 1 | + (0.905 − 0.425i)5-s − 0.0490i·7-s + 0.334i·11-s − 0.423i·13-s + 0.374·17-s + 0.138·19-s − 0.533·23-s + (0.638 − 0.769i)25-s − 0.828i·29-s + 0.0337·31-s + (−0.0208 − 0.0443i)35-s − 0.979i·37-s + 0.196i·41-s + 0.449i·43-s + 0.824·47-s + ⋯ |
Λ(s)=(=(2160s/2ΓC(s)L(s)(0.425+0.905i)Λ(3−s)
Λ(s)=(=(2160s/2ΓC(s+1)L(s)(0.425+0.905i)Λ(1−s)
Degree: |
2 |
Conductor: |
2160
= 24⋅33⋅5
|
Sign: |
0.425+0.905i
|
Analytic conductor: |
58.8557 |
Root analytic conductor: |
7.67174 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2160(1889,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2160, ( :1), 0.425+0.905i)
|
Particular Values
L(23) |
≈ |
2.339662592 |
L(21) |
≈ |
2.339662592 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(−4.52+2.12i)T |
good | 7 | 1+0.343iT−49T2 |
| 11 | 1−3.68iT−121T2 |
| 13 | 1+5.50iT−169T2 |
| 17 | 1−6.36T+289T2 |
| 19 | 1−2.62T+361T2 |
| 23 | 1+12.2T+529T2 |
| 29 | 1+24.0iT−841T2 |
| 31 | 1−1.04T+961T2 |
| 37 | 1+36.2iT−1.36e3T2 |
| 41 | 1−8.06iT−1.68e3T2 |
| 43 | 1−19.3iT−1.84e3T2 |
| 47 | 1−38.7T+2.20e3T2 |
| 53 | 1−3.24T+2.80e3T2 |
| 59 | 1+51.5iT−3.48e3T2 |
| 61 | 1−28.7T+3.72e3T2 |
| 67 | 1−77.8iT−4.48e3T2 |
| 71 | 1+87.5iT−5.04e3T2 |
| 73 | 1+108.iT−5.32e3T2 |
| 79 | 1+78.1T+6.24e3T2 |
| 83 | 1−62.1T+6.88e3T2 |
| 89 | 1+35.2iT−7.92e3T2 |
| 97 | 1+65.0iT−9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.849519825282976006781134323337, −7.996194158688117391799364227753, −7.25514227567987444353365206764, −6.21792264960395147356071660227, −5.65691641120240140700293742054, −4.81939800031024998323921807132, −3.89665815126146577486180656671, −2.69657455309781269778047474724, −1.80147428834616529069564419399, −0.62059141102165334455613256438,
1.12940376088264433790456759508, 2.20327428346451379633958785336, 3.10659549353048020388584107784, 4.10939583642853321779679211717, 5.25119821181268042392866551484, 5.84338736633590291479134862546, 6.69513488283933821665759503446, 7.33429523527432624177834362891, 8.387772240300479727383083834653, 9.058661210836890141999244815746