Properties

Label 2-2175-1.1-c1-0-9
Degree $2$
Conductor $2175$
Sign $1$
Analytic cond. $17.3674$
Root an. cond. $4.16742$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.14·2-s − 3-s − 0.680·4-s + 1.14·6-s − 3.52·7-s + 3.07·8-s + 9-s + 5.92·11-s + 0.680·12-s − 2.69·13-s + 4.04·14-s − 2.17·16-s + 5.21·17-s − 1.14·18-s − 4.16·19-s + 3.52·21-s − 6.80·22-s − 3.38·23-s − 3.07·24-s + 3.09·26-s − 27-s + 2.39·28-s − 29-s + 1.42·31-s − 3.65·32-s − 5.92·33-s − 5.99·34-s + ⋯
L(s)  = 1  − 0.812·2-s − 0.577·3-s − 0.340·4-s + 0.469·6-s − 1.33·7-s + 1.08·8-s + 0.333·9-s + 1.78·11-s + 0.196·12-s − 0.746·13-s + 1.08·14-s − 0.544·16-s + 1.26·17-s − 0.270·18-s − 0.956·19-s + 0.768·21-s − 1.45·22-s − 0.705·23-s − 0.628·24-s + 0.606·26-s − 0.192·27-s + 0.452·28-s − 0.185·29-s + 0.255·31-s − 0.646·32-s − 1.03·33-s − 1.02·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2175\)    =    \(3 \cdot 5^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(17.3674\)
Root analytic conductor: \(4.16742\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2175,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5646255482\)
\(L(\frac12)\) \(\approx\) \(0.5646255482\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 \)
29 \( 1 + T \)
good2 \( 1 + 1.14T + 2T^{2} \)
7 \( 1 + 3.52T + 7T^{2} \)
11 \( 1 - 5.92T + 11T^{2} \)
13 \( 1 + 2.69T + 13T^{2} \)
17 \( 1 - 5.21T + 17T^{2} \)
19 \( 1 + 4.16T + 19T^{2} \)
23 \( 1 + 3.38T + 23T^{2} \)
31 \( 1 - 1.42T + 31T^{2} \)
37 \( 1 + 3.36T + 37T^{2} \)
41 \( 1 - 3.78T + 41T^{2} \)
43 \( 1 + 4.17T + 43T^{2} \)
47 \( 1 + 11.3T + 47T^{2} \)
53 \( 1 - 6.14T + 53T^{2} \)
59 \( 1 + 2.59T + 59T^{2} \)
61 \( 1 + 13.0T + 61T^{2} \)
67 \( 1 - 8.72T + 67T^{2} \)
71 \( 1 - 13.8T + 71T^{2} \)
73 \( 1 - 5.58T + 73T^{2} \)
79 \( 1 - 5.07T + 79T^{2} \)
83 \( 1 - 1.68T + 83T^{2} \)
89 \( 1 - 3.16T + 89T^{2} \)
97 \( 1 - 6.72T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.318457848571595702208551918497, −8.432452131819620144158406363708, −7.54675591590105769616006329080, −6.66753181040984061777160331774, −6.21421326042430814936255942425, −5.09993654205724016729633550915, −4.11307252849259335785251141687, −3.41867480863150989055727545481, −1.78161934335717031107631019572, −0.58370932640766198592224533619, 0.58370932640766198592224533619, 1.78161934335717031107631019572, 3.41867480863150989055727545481, 4.11307252849259335785251141687, 5.09993654205724016729633550915, 6.21421326042430814936255942425, 6.66753181040984061777160331774, 7.54675591590105769616006329080, 8.432452131819620144158406363708, 9.318457848571595702208551918497

Graph of the $Z$-function along the critical line