L(s) = 1 | − 2-s − 2·3-s + 4-s + 2·6-s − 2·7-s − 3·8-s + 3·9-s − 7·11-s − 2·12-s + 4·13-s + 2·14-s + 16-s + 6·17-s − 3·18-s + 2·19-s + 4·21-s + 7·22-s − 9·23-s + 6·24-s − 4·26-s − 4·27-s − 2·28-s + 2·29-s + 8·31-s + 32-s + 14·33-s − 6·34-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1.15·3-s + 1/2·4-s + 0.816·6-s − 0.755·7-s − 1.06·8-s + 9-s − 2.11·11-s − 0.577·12-s + 1.10·13-s + 0.534·14-s + 1/4·16-s + 1.45·17-s − 0.707·18-s + 0.458·19-s + 0.872·21-s + 1.49·22-s − 1.87·23-s + 1.22·24-s − 0.784·26-s − 0.769·27-s − 0.377·28-s + 0.371·29-s + 1.43·31-s + 0.176·32-s + 2.43·33-s − 1.02·34-s + ⋯ |
Λ(s)=(=(4730625s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(4730625s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
4730625
= 32⋅54⋅292
|
Sign: |
1
|
Analytic conductor: |
301.628 |
Root analytic conductor: |
4.16742 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 4730625, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.8484326010 |
L(21) |
≈ |
0.8484326010 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C1 | (1+T)2 |
| 5 | | 1 |
| 29 | C1 | (1−T)2 |
good | 2 | D4 | 1+T+pT3+p2T4 |
| 7 | D4 | 1+2T−2T2+2pT3+p2T4 |
| 11 | D4 | 1+7T+30T2+7pT3+p2T4 |
| 13 | C2 | (1−2T+pT2)2 |
| 17 | D4 | 1−6T+26T2−6pT3+p2T4 |
| 19 | D4 | 1−2T+22T2−2pT3+p2T4 |
| 23 | D4 | 1+9T+62T2+9pT3+p2T4 |
| 31 | C2 | (1−4T+pT2)2 |
| 37 | D4 | 1+9T+56T2+9pT3+p2T4 |
| 41 | D4 | 1−9T+64T2−9pT3+p2T4 |
| 43 | D4 | 1+3T+50T2+3pT3+p2T4 |
| 47 | D4 | 1−18T+158T2−18pT3+p2T4 |
| 53 | D4 | 1−11T+132T2−11pT3+p2T4 |
| 59 | C2 | (1−12T+pT2)2 |
| 61 | D4 | 1−10T+130T2−10pT3+p2T4 |
| 67 | D4 | 1+2T−18T2+2pT3+p2T4 |
| 71 | D4 | 1+14T+174T2+14pT3+p2T4 |
| 73 | D4 | 1−9T+128T2−9pT3+p2T4 |
| 79 | C2 | (1+12T+pT2)2 |
| 83 | D4 | 1−T+162T2−pT3+p2T4 |
| 89 | C4 | 1−8T+126T2−8pT3+p2T4 |
| 97 | D4 | 1+T+156T2+pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.313222484854293335946781178968, −8.768828903644330276023609874055, −8.456027232849861413611735095652, −8.223774013429579429353856889744, −7.67028272507488677244890318114, −7.18347387849391872063882335077, −7.14973796147253365657969554588, −6.40092069596639209662367063643, −6.08519516462701222910325816287, −5.73218190932137707230511023857, −5.35367422485844545339458319311, −5.35043315509478588001394626005, −4.29007800986332889679917777341, −4.02152142549637783535081537172, −3.47490252229220580230117733943, −2.71097211105444074065876313499, −2.62268070207715116817454999560, −1.83965249723161771003265248928, −0.69959274062441458301279973544, −0.64227985210694428018150375061,
0.64227985210694428018150375061, 0.69959274062441458301279973544, 1.83965249723161771003265248928, 2.62268070207715116817454999560, 2.71097211105444074065876313499, 3.47490252229220580230117733943, 4.02152142549637783535081537172, 4.29007800986332889679917777341, 5.35043315509478588001394626005, 5.35367422485844545339458319311, 5.73218190932137707230511023857, 6.08519516462701222910325816287, 6.40092069596639209662367063643, 7.14973796147253365657969554588, 7.18347387849391872063882335077, 7.67028272507488677244890318114, 8.223774013429579429353856889744, 8.456027232849861413611735095652, 8.768828903644330276023609874055, 9.313222484854293335946781178968