Properties

Label 2-2175-1.1-c1-0-67
Degree $2$
Conductor $2175$
Sign $-1$
Analytic cond. $17.3674$
Root an. cond. $4.16742$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.46·2-s + 3-s + 0.139·4-s − 1.46·6-s + 1.32·7-s + 2.72·8-s + 9-s − 5.32·11-s + 0.139·12-s − 2.39·13-s − 1.93·14-s − 4.25·16-s + 5.04·17-s − 1.46·18-s + 0.925·19-s + 1.32·21-s + 7.78·22-s − 5.72·23-s + 2.72·24-s + 3.50·26-s + 27-s + 0.184·28-s + 29-s + 5.72·31-s + 0.786·32-s − 5.32·33-s − 7.37·34-s + ⋯
L(s)  = 1  − 1.03·2-s + 0.577·3-s + 0.0695·4-s − 0.597·6-s + 0.500·7-s + 0.962·8-s + 0.333·9-s − 1.60·11-s + 0.0401·12-s − 0.665·13-s − 0.517·14-s − 1.06·16-s + 1.22·17-s − 0.344·18-s + 0.212·19-s + 0.288·21-s + 1.65·22-s − 1.19·23-s + 0.555·24-s + 0.687·26-s + 0.192·27-s + 0.0348·28-s + 0.185·29-s + 1.02·31-s + 0.138·32-s − 0.926·33-s − 1.26·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2175\)    =    \(3 \cdot 5^{2} \cdot 29\)
Sign: $-1$
Analytic conductor: \(17.3674\)
Root analytic conductor: \(4.16742\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2175,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 \)
29 \( 1 - T \)
good2 \( 1 + 1.46T + 2T^{2} \)
7 \( 1 - 1.32T + 7T^{2} \)
11 \( 1 + 5.32T + 11T^{2} \)
13 \( 1 + 2.39T + 13T^{2} \)
17 \( 1 - 5.04T + 17T^{2} \)
19 \( 1 - 0.925T + 19T^{2} \)
23 \( 1 + 5.72T + 23T^{2} \)
31 \( 1 - 5.72T + 31T^{2} \)
37 \( 1 + 1.07T + 37T^{2} \)
41 \( 1 + 11.2T + 41T^{2} \)
43 \( 1 + 9.29T + 43T^{2} \)
47 \( 1 + 3.97T + 47T^{2} \)
53 \( 1 + 2.12T + 53T^{2} \)
59 \( 1 + 1.35T + 59T^{2} \)
61 \( 1 - 2.92T + 61T^{2} \)
67 \( 1 - 7.97T + 67T^{2} \)
71 \( 1 + 4.12T + 71T^{2} \)
73 \( 1 - 1.07T + 73T^{2} \)
79 \( 1 - 8.36T + 79T^{2} \)
83 \( 1 - 4.79T + 83T^{2} \)
89 \( 1 + 0.547T + 89T^{2} \)
97 \( 1 - 5.57T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.431305038387335236144784036919, −8.020941212731803498981576918989, −7.67488377894685106830099142240, −6.64539560275474378142995615595, −5.23722153596370632844623904658, −4.84166293738482365120223238417, −3.55969777565999339269089988445, −2.49006891216790608009569272847, −1.49509356174790438486979206418, 0, 1.49509356174790438486979206418, 2.49006891216790608009569272847, 3.55969777565999339269089988445, 4.84166293738482365120223238417, 5.23722153596370632844623904658, 6.64539560275474378142995615595, 7.67488377894685106830099142240, 8.020941212731803498981576918989, 8.431305038387335236144784036919

Graph of the $Z$-function along the critical line