Properties

Label 2-2175-1.1-c1-0-55
Degree $2$
Conductor $2175$
Sign $-1$
Analytic cond. $17.3674$
Root an. cond. $4.16742$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.712·2-s − 3-s − 1.49·4-s − 0.712·6-s − 2.77·7-s − 2.48·8-s + 9-s + 4.26·11-s + 1.49·12-s + 0.779·13-s − 1.98·14-s + 1.21·16-s − 1.90·17-s + 0.712·18-s + 6.72·19-s + 2.77·21-s + 3.04·22-s + 2.17·23-s + 2.48·24-s + 0.555·26-s − 27-s + 4.14·28-s + 29-s − 8.82·31-s + 5.83·32-s − 4.26·33-s − 1.35·34-s + ⋯
L(s)  = 1  + 0.503·2-s − 0.577·3-s − 0.746·4-s − 0.290·6-s − 1.05·7-s − 0.879·8-s + 0.333·9-s + 1.28·11-s + 0.430·12-s + 0.216·13-s − 0.529·14-s + 0.302·16-s − 0.461·17-s + 0.167·18-s + 1.54·19-s + 0.606·21-s + 0.648·22-s + 0.452·23-s + 0.507·24-s + 0.108·26-s − 0.192·27-s + 0.783·28-s + 0.185·29-s − 1.58·31-s + 1.03·32-s − 0.742·33-s − 0.232·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2175\)    =    \(3 \cdot 5^{2} \cdot 29\)
Sign: $-1$
Analytic conductor: \(17.3674\)
Root analytic conductor: \(4.16742\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2175,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 \)
29 \( 1 - T \)
good2 \( 1 - 0.712T + 2T^{2} \)
7 \( 1 + 2.77T + 7T^{2} \)
11 \( 1 - 4.26T + 11T^{2} \)
13 \( 1 - 0.779T + 13T^{2} \)
17 \( 1 + 1.90T + 17T^{2} \)
19 \( 1 - 6.72T + 19T^{2} \)
23 \( 1 - 2.17T + 23T^{2} \)
31 \( 1 + 8.82T + 31T^{2} \)
37 \( 1 - 1.48T + 37T^{2} \)
41 \( 1 + 7.71T + 41T^{2} \)
43 \( 1 + 8.19T + 43T^{2} \)
47 \( 1 + 5.19T + 47T^{2} \)
53 \( 1 + 11.7T + 53T^{2} \)
59 \( 1 + 4.46T + 59T^{2} \)
61 \( 1 + 5.24T + 61T^{2} \)
67 \( 1 + 8.49T + 67T^{2} \)
71 \( 1 - 0.663T + 71T^{2} \)
73 \( 1 - 16.5T + 73T^{2} \)
79 \( 1 - 9.54T + 79T^{2} \)
83 \( 1 + 0.0123T + 83T^{2} \)
89 \( 1 + 5.46T + 89T^{2} \)
97 \( 1 + 0.952T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.015825693527396108120868020832, −7.85950359589051773324718604151, −6.74257224241768851914314453122, −6.35621466555676673674208619209, −5.40533470545678818905974101564, −4.73401512552929285281975518636, −3.64577480205658030495224175197, −3.24936797193772198072486306143, −1.38585558305090380304521523032, 0, 1.38585558305090380304521523032, 3.24936797193772198072486306143, 3.64577480205658030495224175197, 4.73401512552929285281975518636, 5.40533470545678818905974101564, 6.35621466555676673674208619209, 6.74257224241768851914314453122, 7.85950359589051773324718604151, 9.015825693527396108120868020832

Graph of the $Z$-function along the critical line