L(s) = 1 | − 1.98i·2-s − i·3-s − 1.93·4-s − 1.98·6-s + 2.16i·7-s − 0.119i·8-s − 9-s + 3.44·11-s + 1.93i·12-s + 3.74i·13-s + 4.29·14-s − 4.11·16-s + 4.33i·17-s + 1.98i·18-s − 3.90·19-s + ⋯ |
L(s) = 1 | − 1.40i·2-s − 0.577i·3-s − 0.969·4-s − 0.810·6-s + 0.818i·7-s − 0.0423i·8-s − 0.333·9-s + 1.03·11-s + 0.559i·12-s + 1.03i·13-s + 1.14·14-s − 1.02·16-s + 1.05i·17-s + 0.467i·18-s − 0.895·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.656333095\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.656333095\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + iT \) |
| 5 | \( 1 \) |
| 29 | \( 1 + T \) |
good | 2 | \( 1 + 1.98iT - 2T^{2} \) |
| 7 | \( 1 - 2.16iT - 7T^{2} \) |
| 11 | \( 1 - 3.44T + 11T^{2} \) |
| 13 | \( 1 - 3.74iT - 13T^{2} \) |
| 17 | \( 1 - 4.33iT - 17T^{2} \) |
| 19 | \( 1 + 3.90T + 19T^{2} \) |
| 23 | \( 1 - 3.78iT - 23T^{2} \) |
| 31 | \( 1 - 10.3T + 31T^{2} \) |
| 37 | \( 1 + 7.70iT - 37T^{2} \) |
| 41 | \( 1 - 7.88T + 41T^{2} \) |
| 43 | \( 1 + 0.975iT - 43T^{2} \) |
| 47 | \( 1 - 12.1iT - 47T^{2} \) |
| 53 | \( 1 - 13.1iT - 53T^{2} \) |
| 59 | \( 1 + 1.47T + 59T^{2} \) |
| 61 | \( 1 + 4.24T + 61T^{2} \) |
| 67 | \( 1 + 6.74iT - 67T^{2} \) |
| 71 | \( 1 - 10.3T + 71T^{2} \) |
| 73 | \( 1 - 12.3iT - 73T^{2} \) |
| 79 | \( 1 - 5.02T + 79T^{2} \) |
| 83 | \( 1 + 10.4iT - 83T^{2} \) |
| 89 | \( 1 + 4.35T + 89T^{2} \) |
| 97 | \( 1 - 3.75iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.146301521490862210793744339437, −8.488261443182238501037329919047, −7.41288768195546252697209858504, −6.39556158962876571017533101314, −5.98372758835787152325711404898, −4.46744238298049686312617556217, −3.91275194773925957129301406632, −2.74989407356915575498917317117, −1.98157822098564671085196866245, −1.17918097434105750771515152287,
0.65235584216096799006255581836, 2.56440043298082356769056289853, 3.78511780981422966365630727873, 4.61466438879545812686495472801, 5.23188119011665723039236717466, 6.37028954278872944143861292222, 6.66231662728529281964858147757, 7.64141465500375073726852332220, 8.301578776947915879886720936961, 8.939209343383113640063837920574