L(s) = 1 | − 1.98i·2-s − i·3-s − 1.93·4-s − 1.98·6-s + 2.16i·7-s − 0.119i·8-s − 9-s + 3.44·11-s + 1.93i·12-s + 3.74i·13-s + 4.29·14-s − 4.11·16-s + 4.33i·17-s + 1.98i·18-s − 3.90·19-s + ⋯ |
L(s) = 1 | − 1.40i·2-s − 0.577i·3-s − 0.969·4-s − 0.810·6-s + 0.818i·7-s − 0.0423i·8-s − 0.333·9-s + 1.03·11-s + 0.559i·12-s + 1.03i·13-s + 1.14·14-s − 1.02·16-s + 1.05i·17-s + 0.467i·18-s − 0.895·19-s + ⋯ |
Λ(s)=(=(2175s/2ΓC(s)L(s)(0.447+0.894i)Λ(2−s)
Λ(s)=(=(2175s/2ΓC(s+1/2)L(s)(0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
2175
= 3⋅52⋅29
|
Sign: |
0.447+0.894i
|
Analytic conductor: |
17.3674 |
Root analytic conductor: |
4.16742 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2175(349,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2175, ( :1/2), 0.447+0.894i)
|
Particular Values
L(1) |
≈ |
1.656333095 |
L(21) |
≈ |
1.656333095 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+iT |
| 5 | 1 |
| 29 | 1+T |
good | 2 | 1+1.98iT−2T2 |
| 7 | 1−2.16iT−7T2 |
| 11 | 1−3.44T+11T2 |
| 13 | 1−3.74iT−13T2 |
| 17 | 1−4.33iT−17T2 |
| 19 | 1+3.90T+19T2 |
| 23 | 1−3.78iT−23T2 |
| 31 | 1−10.3T+31T2 |
| 37 | 1+7.70iT−37T2 |
| 41 | 1−7.88T+41T2 |
| 43 | 1+0.975iT−43T2 |
| 47 | 1−12.1iT−47T2 |
| 53 | 1−13.1iT−53T2 |
| 59 | 1+1.47T+59T2 |
| 61 | 1+4.24T+61T2 |
| 67 | 1+6.74iT−67T2 |
| 71 | 1−10.3T+71T2 |
| 73 | 1−12.3iT−73T2 |
| 79 | 1−5.02T+79T2 |
| 83 | 1+10.4iT−83T2 |
| 89 | 1+4.35T+89T2 |
| 97 | 1−3.75iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.146301521490862210793744339437, −8.488261443182238501037329919047, −7.41288768195546252697209858504, −6.39556158962876571017533101314, −5.98372758835787152325711404898, −4.46744238298049686312617556217, −3.91275194773925957129301406632, −2.74989407356915575498917317117, −1.98157822098564671085196866245, −1.17918097434105750771515152287,
0.65235584216096799006255581836, 2.56440043298082356769056289853, 3.78511780981422966365630727873, 4.61466438879545812686495472801, 5.23188119011665723039236717466, 6.37028954278872944143861292222, 6.66231662728529281964858147757, 7.64141465500375073726852332220, 8.301578776947915879886720936961, 8.939209343383113640063837920574