L(s) = 1 | − 4·2-s − 30·3-s + 4-s + 120·6-s − 75·7-s + 25·8-s + 495·9-s + 3·11-s − 30·12-s − 75·13-s + 300·14-s − 85·16-s − 131·17-s − 1.98e3·18-s + 264·19-s + 2.25e3·21-s − 12·22-s − 204·23-s − 750·24-s + 300·26-s − 5.94e3·27-s − 75·28-s − 290·29-s + 924·31-s + 183·32-s − 90·33-s + 524·34-s + ⋯ |
L(s) = 1 | − 1.41·2-s − 5.77·3-s + 1/8·4-s + 8.16·6-s − 4.04·7-s + 1.10·8-s + 55/3·9-s + 0.0822·11-s − 0.721·12-s − 1.60·13-s + 5.72·14-s − 1.32·16-s − 1.86·17-s − 25.9·18-s + 3.18·19-s + 23.3·21-s − 0.116·22-s − 1.84·23-s − 6.37·24-s + 2.26·26-s − 42.3·27-s − 0.506·28-s − 1.85·29-s + 5.35·31-s + 1.01·32-s − 0.474·33-s + 2.64·34-s + ⋯ |
Λ(s)=(=((310⋅520⋅2910)s/2ΓC(s)10L(s)Λ(4−s)
Λ(s)=(=((310⋅520⋅2910)s/2ΓC(s+3/2)10L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.1852276403 |
L(21) |
≈ |
0.1852276403 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | (1+pT)10 |
| 5 | 1 |
| 29 | (1+pT)10 |
good | 2 | 1+p2T+15T2+31T3+47pT4+127T5+175pT6−269pT7−81p2T8−239p4T9+367p6T10−239p7T11−81p8T12−269p10T13+175p13T14+127p15T15+47p19T16+31p21T17+15p24T18+p29T19+p30T20 |
| 7 | 1+75T+4349T2+181642T3+6656673T4+206630229T5+5833261716T6+146138007193T7+3379984441646T8+70697748137451T9+196202793405810pT10+70697748137451p3T11+3379984441646p6T12+146138007193p9T13+5833261716p12T14+206630229p15T15+6656673p18T16+181642p21T17+4349p24T18+75p27T19+p30T20 |
| 11 | 1−3T+6228T2−33867T3+19457362T4−193113981T5+43727711526T6−548413433115T7+79124653287245T8−958830278761134T9+116734800107119276T10−958830278761134p3T11+79124653287245p6T12−548413433115p9T13+43727711526p12T14−193113981p15T15+19457362p18T16−33867p21T17+6228p24T18−3p27T19+p30T20 |
| 13 | 1+75T+10297T2+724904T3+59406937T4+3736300879T5+239448338036T6+13847883384393T7+741713663817214T8+39022215828823561T9+140715758908462622pT10+39022215828823561p3T11+741713663817214p6T12+13847883384393p9T13+239448338036p12T14+3736300879p15T15+59406937p18T16+724904p21T17+10297p24T18+75p27T19+p30T20 |
| 17 | 1+131T+18851T2+2063592T3+186346487T4+14919655843T5+1209057672744T6+76744635197001T7+5831013350958248T8+387146061111209753T9+26351653051154600938T10+387146061111209753p3T11+5831013350958248p6T12+76744635197001p9T13+1209057672744p12T14+14919655843p15T15+186346487p18T16+2063592p21T17+18851p24T18+131p27T19+p30T20 |
| 19 | 1−264T+49690T2−5884480T3+646999973T4−57535351432T5+5638274075320T6−453767024009096T7+40345751365807186T8−2879054647357398936T9+25⋯60T10−2879054647357398936p3T11+40345751365807186p6T12−453767024009096p9T13+5638274075320p12T14−57535351432p15T15+646999973p18T16−5884480p21T17+49690p24T18−264p27T19+p30T20 |
| 23 | 1+204T+85735T2+13442446T3+3227661233T4+432238552034T5+77287479740476T6+9377158932056890T7+1374659627694043454T8+15⋯62T9+18⋯94T10+15⋯62p3T11+1374659627694043454p6T12+9377158932056890p9T13+77287479740476p12T14+432238552034p15T15+3227661233p18T16+13442446p21T17+85735p24T18+204p27T19+p30T20 |
| 31 | 1−924T+481922T2−171484788T3+47268473485T4−10848035817696T5+2262948355557848T6−455712768158393344T7+2935429135812927246pT8−17⋯08T9+31⋯36T10−17⋯08p3T11+2935429135812927246p7T12−455712768158393344p9T13+2262948355557848p12T14−10848035817696p15T15+47268473485p18T16−171484788p21T17+481922p24T18−924p27T19+p30T20 |
| 37 | 1+212T+244875T2+63865934T3+34071945753T4+9438249194838T5+3290715983025020T6+911944517057300106T7+23⋯22T8+62⋯26T9+13⋯06T10+62⋯26p3T11+23⋯22p6T12+911944517057300106p9T13+3290715983025020p12T14+9438249194838p15T15+34071945753p18T16+63865934p21T17+244875p24T18+212p27T19+p30T20 |
| 41 | 1+192T+412143T2+60903586T3+86214319565T4+10490909875438T5+12061213397017476T6+1250206205177719290T7+12⋯26T8+11⋯02T9+97⋯22T10+11⋯02p3T11+12⋯26p6T12+1250206205177719290p9T13+12061213397017476p12T14+10490909875438p15T15+86214319565p18T16+60903586p21T17+412143p24T18+192p27T19+p30T20 |
| 43 | 1+614T+559999T2+256041822T3+145627636581T4+54262712047260T5+24016915481183380T6+7692373697421922076T7+28⋯46T8+80⋯96T9+25⋯70T10+80⋯96p3T11+28⋯46p6T12+7692373697421922076p9T13+24016915481183380p12T14+54262712047260p15T15+145627636581p18T16+256041822p21T17+559999p24T18+614p27T19+p30T20 |
| 47 | 1+173T+604281T2+77409878T3+170107620517T4+13663097450483T5+30107873803292316T6+1100188730698156631T7+39⋯98T8+30⋯29T9+43⋯94T10+30⋯29p3T11+39⋯98p6T12+1100188730698156631p9T13+30107873803292316p12T14+13663097450483p15T15+170107620517p18T16+77409878p21T17+604281p24T18+173p27T19+p30T20 |
| 53 | 1+658T+851043T2+438313758T3+333130613549T4+142613148718444T5+85246198893996068T6+32140168929964093684T7+16⋯18T8+57⋯52T9+27⋯18T10+57⋯52p3T11+16⋯18p6T12+32140168929964093684p9T13+85246198893996068p12T14+142613148718444p15T15+333130613549p18T16+438313758p21T17+851043p24T18+658p27T19+p30T20 |
| 59 | 1−190T+1162874T2−115602698T3+654603455477T4−18529287790584T5+244034807765660600T6+5572841685992684344T7+68⋯46T8+33⋯44T9+15⋯84T10+33⋯44p3T11+68⋯46p6T12+5572841685992684344p9T13+244034807765660600p12T14−18529287790584p15T15+654603455477p18T16−115602698p21T17+1162874p24T18−190p27T19+p30T20 |
| 61 | 1−1452T+2402718T2−2378615028T3+2381199022661T4−1829799967832888T5+1380956800645683048T6−86⋯48T7+53⋯26T8−28⋯44T9+14⋯52T10−28⋯44p3T11+53⋯26p6T12−86⋯48p9T13+1380956800645683048p12T14−1829799967832888p15T15+2381199022661p18T16−2378615028p21T17+2402718p24T18−1452p27T19+p30T20 |
| 67 | 1+343T+1564407T2+123013642T3+1036964472039T4−182771991337139T5+453294026885687224T6−16⋯51T7+17⋯04T8−72⋯73T9+57⋯86T10−72⋯73p3T11+17⋯04p6T12−16⋯51p9T13+453294026885687224p12T14−182771991337139p15T15+1036964472039p18T16+123013642p21T17+1564407p24T18+343p27T19+p30T20 |
| 71 | 1−8T+2054898T2+350475824T3+1940327221213T4+722485340128872T5+1144209103579187736T6+67⋯20T7+50⋯74T8+37⋯00T9+18⋯40T10+37⋯00p3T11+50⋯74p6T12+67⋯20p9T13+1144209103579187736p12T14+722485340128872p15T15+1940327221213p18T16+350475824p21T17+2054898p24T18−8p27T19+p30T20 |
| 73 | 1+1500T+2910491T2+3080902530T3+3767645887721T4+3256214674125362T5+3090987939219640012T6+22⋯82T7+18⋯34T8+11⋯06T9+80⋯62T10+11⋯06p3T11+18⋯34p6T12+22⋯82p9T13+3090987939219640012p12T14+3256214674125362p15T15+3767645887721p18T16+3080902530p21T17+2910491p24T18+1500p27T19+p30T20 |
| 79 | 1−2438T+5415286T2−7517245138T3+9411524773309T4−8926607546744448T5+7716663020937405928T6−53⋯76T7+35⋯94T8−20⋯24T9+14⋯44T10−20⋯24p3T11+35⋯94p6T12−53⋯76p9T13+7716663020937405928p12T14−8926607546744448p15T15+9411524773309p18T16−7517245138p21T17+5415286p24T18−2438p27T19+p30T20 |
| 83 | 1+1336T+3369527T2+2459621218T3+3945615288257T4+1456880186173970T5+2681144587556984476T6+32⋯26T7+16⋯02T8+77⋯90T9+10⋯30T10+77⋯90p3T11+16⋯02p6T12+32⋯26p9T13+2681144587556984476p12T14+1456880186173970p15T15+3945615288257p18T16+2459621218p21T17+3369527p24T18+1336p27T19+p30T20 |
| 89 | 1−1319T+3976549T2−3918029092T3+6926980930861T4−5155352728597703T5+7071873364160906092T6−39⋯89T7+50⋯02T8−22⋯93T9+33⋯90T10−22⋯93p3T11+50⋯02p6T12−39⋯89p9T13+7071873364160906092p12T14−5155352728597703p15T15+6926980930861p18T16−3918029092p21T17+3976549p24T18−1319p27T19+p30T20 |
| 97 | 1+2034T+7702255T2+12545817282T3+27183401753561T4+36890098418368256T5+58879246406538031644T6+67⋯04T7+87⋯54T8+86⋯40T9+93⋯74T10+86⋯40p3T11+87⋯54p6T12+67⋯04p9T13+58879246406538031644p12T14+36890098418368256p15T15+27183401753561p18T16+12545817282p21T17+7702255p24T18+2034p27T19+p30T20 |
show more | |
show less | |
L(s)=p∏ j=1∏20(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−2.68735934564498486900759643678, −2.67614198966311015480956108344, −2.63672413388383592774629294101, −2.41173021018207672804971366778, −2.39489336974483060965063331190, −2.27220556798463851363445420647, −2.15668825733213665793625984049, −1.98248773648992568286429927967, −1.72800482282523772139055547022, −1.64180340462305514584450984033, −1.48705739979872738494563196773, −1.45932405887281340516049082699, −1.42107431494537558318352809265, −1.34125288101139308364089839747, −1.32996938391108176283983052108, −1.05754814945387658644118699200, −0.833559509572900423824944043485, −0.59360884035867361558856459438, −0.54745498461155909374413355612, −0.48258235850975317878369964175, −0.44804784250636344828325355484, −0.36577161397184355739453548989, −0.30022125825590516828855678210, −0.27467808573984025906871897129, −0.20083008966340051859894687835,
0.20083008966340051859894687835, 0.27467808573984025906871897129, 0.30022125825590516828855678210, 0.36577161397184355739453548989, 0.44804784250636344828325355484, 0.48258235850975317878369964175, 0.54745498461155909374413355612, 0.59360884035867361558856459438, 0.833559509572900423824944043485, 1.05754814945387658644118699200, 1.32996938391108176283983052108, 1.34125288101139308364089839747, 1.42107431494537558318352809265, 1.45932405887281340516049082699, 1.48705739979872738494563196773, 1.64180340462305514584450984033, 1.72800482282523772139055547022, 1.98248773648992568286429927967, 2.15668825733213665793625984049, 2.27220556798463851363445420647, 2.39489336974483060965063331190, 2.41173021018207672804971366778, 2.63672413388383592774629294101, 2.67614198966311015480956108344, 2.68735934564498486900759643678
Plot not available for L-functions of degree greater than 10.