L(s) = 1 | + (43.0 + 13.9i)2-s + (232. − 168. i)3-s + (1.65e3 + 1.20e3i)4-s + (6.94e3 + 2.13e4i)5-s + (1.23e4 − 4.01e3i)6-s + (1.27e5 − 1.76e5i)7-s + (5.44e4 + 7.49e4i)8-s + (−1.38e5 + 4.27e5i)9-s + 1.01e6i·10-s + (−1.67e6 + 5.89e5i)11-s + 5.87e5·12-s + (3.06e6 + 9.95e5i)13-s + (7.96e6 − 5.78e6i)14-s + (5.22e6 + 3.79e6i)15-s + (1.29e6 + 3.98e6i)16-s + (4.69e6 − 1.52e6i)17-s + ⋯ |
L(s) = 1 | + (0.672 + 0.218i)2-s + (0.318 − 0.231i)3-s + (0.404 + 0.293i)4-s + (0.444 + 1.36i)5-s + (0.264 − 0.0860i)6-s + (1.08 − 1.49i)7-s + (0.207 + 0.286i)8-s + (−0.261 + 0.803i)9-s + 1.01i·10-s + (−0.943 + 0.332i)11-s + 0.196·12-s + (0.634 + 0.206i)13-s + (1.05 − 0.768i)14-s + (0.458 + 0.333i)15-s + (0.0772 + 0.237i)16-s + (0.194 − 0.0632i)17-s + ⋯ |
Λ(s)=(=(22s/2ΓC(s)L(s)(0.585−0.810i)Λ(13−s)
Λ(s)=(=(22s/2ΓC(s+6)L(s)(0.585−0.810i)Λ(1−s)
Degree: |
2 |
Conductor: |
22
= 2⋅11
|
Sign: |
0.585−0.810i
|
Analytic conductor: |
20.1078 |
Root analytic conductor: |
4.48417 |
Motivic weight: |
12 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ22(13,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 22, ( :6), 0.585−0.810i)
|
Particular Values
L(213) |
≈ |
3.28301+1.67894i |
L(21) |
≈ |
3.28301+1.67894i |
L(7) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−43.0−13.9i)T |
| 11 | 1+(1.67e6−5.89e5i)T |
good | 3 | 1+(−232.+168.i)T+(1.64e5−5.05e5i)T2 |
| 5 | 1+(−6.94e3−2.13e4i)T+(−1.97e8+1.43e8i)T2 |
| 7 | 1+(−1.27e5+1.76e5i)T+(−4.27e9−1.31e10i)T2 |
| 13 | 1+(−3.06e6−9.95e5i)T+(1.88e13+1.36e13i)T2 |
| 17 | 1+(−4.69e6+1.52e6i)T+(4.71e14−3.42e14i)T2 |
| 19 | 1+(−3.04e7−4.18e7i)T+(−6.83e14+2.10e15i)T2 |
| 23 | 1−2.19e8T+2.19e16T2 |
| 29 | 1+(3.99e8−5.49e8i)T+(−1.09e17−3.36e17i)T2 |
| 31 | 1+(−1.45e8+4.47e8i)T+(−6.37e17−4.62e17i)T2 |
| 37 | 1+(2.11e9+1.53e9i)T+(2.03e18+6.26e18i)T2 |
| 41 | 1+(−1.01e9−1.39e9i)T+(−6.97e18+2.14e19i)T2 |
| 43 | 1+7.35e9iT−3.99e19T2 |
| 47 | 1+(9.14e9−6.64e9i)T+(3.59e19−1.10e20i)T2 |
| 53 | 1+(−1.11e10+3.43e10i)T+(−3.97e20−2.88e20i)T2 |
| 59 | 1+(2.56e10+1.86e10i)T+(5.49e20+1.69e21i)T2 |
| 61 | 1+(3.41e10−1.10e10i)T+(2.14e21−1.56e21i)T2 |
| 67 | 1−9.79e10T+8.18e21T2 |
| 71 | 1+(5.90e10+1.81e11i)T+(−1.32e22+9.64e21i)T2 |
| 73 | 1+(−4.51e10+6.21e10i)T+(−7.07e21−2.17e22i)T2 |
| 79 | 1+(1.85e11+6.02e10i)T+(4.78e22+3.47e22i)T2 |
| 83 | 1+(−2.73e11+8.88e10i)T+(8.64e22−6.28e22i)T2 |
| 89 | 1−4.38e11T+2.46e23T2 |
| 97 | 1+(2.13e11−6.57e11i)T+(−5.61e23−4.07e23i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.80553486565413086965927660183, −14.06620973596091708632509653478, −13.31394793713968394682149117379, −11.07753891282438794126305613752, −10.51743239307205734987611406464, −7.83404600535012754697586392344, −7.04867379046231647846732724417, −5.15201729416173564456342994248, −3.35791956639433298784937440541, −1.80683490473302409358034834060,
1.17483028671454424826175896376, 2.79504475201254759515794715140, 4.90495260705984826535019268183, 5.68463860853567114321838349943, 8.393416693837112255943037043655, 9.246447172136348137690960763496, 11.32960900182945603285526583760, 12.43778286010381969099654366555, 13.51930693204702331069878823058, 15.01864455563466952138888147253